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ABSTRACT

A simple equation is derived to describe curvilinear flow, and this is then ap-
plied to various practical problems. In the case of annular jet flow, previous
theories are shown to be approximate solutions to the general equation; the
more exact solution of this report is shown to give better agreement with ex-
periment.

The new theory is also applied to the flow of air in a curved duct, the flow into
an Intake, the jet flap, and Coanda flow. Comparison with experiment again
gives good agreement.

Because curvilinear flow implies diffusion, the theory of diffusion is studied
in some c'tail, and a general theory is developed for the total head lost in a
rapid di.-:sion. When applied to the diffusion loss measured in the nozzlz of
an anm ar jet, and the analogous losses in a curved duct, the theory gives ex-
oellent Agreement with experiment.

The various investigations oover fairly wide ares in subsonic aerodynamics.
Thus, i: has proved tmpossile to work out the appdicatoons of the theory com-
pletely for all the case ooamsldsed. The same is true of the experimental work
reported, and fther work ft both aras is rggested.

iV



PREFACE

The work herein reported was carried out at Peter R. Payne, Inc., Rockville,
Maryland, in compliance with U. S. Army Transportation Research Command
Contract DA 44-177-AMC-238(T).

The principal investigator was Mr. Peter R. Payne, and the Project Engineer
was Mr. Alastair Anthony. In general, Mr. Payne was responsible for the
theoretical work and the basic concepts introduced, and Mr. Anthony for the
experimental work and the program management.

Mr. Anthony was ably assisted by Messrs. David Ullman and James Ozenham
of the Payne, Inc. staff, and by Payne's associate consultant, Professor George
Pick.

The technical adminic-tration representative of the U. L. Army Transportation
Research Command was Mr. William E. ickles, whose invaluable assistanoe
is gratefully acknowledged.

I V'a



CONTENTS

ABSTRACT ......................... o................ fit

PREFACE ........... .. .... . .................. v

LIST OF ILLUSTRATIONS ........ .......... ... .. . .. . xvii

LIST OF SYMBOLS ..................... ......... .. . xxvii

CHAPTER ONE - SUMMARY AND DISCUSSION .1

THE FUNDAMENTAL PROBLEM ...................... 1

DIFFUSION LOSSES ........... ............... 5

ANNULAR JET THEORY ................... ........ 8

CHAPLIN'S SOLUTION (THIN-JET THEORY) ............. 9

THE CROSS-SrANTON-JONES SOLUTION
(EXPONENTIAL THEORY) ........ ......... .... ..... 11

PINNES' BOLUTION (FREE-VORTEX FLOW) ....... ... 12

PAYNE'8 CORRECTION FOR JET CnVATUM ............ 14

THE ANNULAR JET SOLUTIOII OF 7= REPORT ......... 14

MOMENTUM BALANCE OF THS ANIWLAR JET .........o 19

COANDA JET THEORY............ ............. 20

INTAKE FLOW THEORY............ .a............ o24

MOMENTUM DRAG .... o ...... a a a o o .......... 26

THE JET FLAP. #. o . .... eec.. o s o o o o @ o o * o..26

JET ISSUING NORMAL TO A FREEZ-rRhAM FLOW ..... . o . .31

S Vi



CHAPTER TWO - GENERAL DIFFUSION THEORY .............. 35

THE FLOW OF A JET THROUGH A DISCONTINUITY IN
STATIC PRESSURE ................................ 35

SOLUTION FOR CONSeRVATION OF TOTAL HEAD ......... .35

THE GENERAL MOMENTUM SOLUTION ................ 36

BORDA-CARNOT DIFFUSION IN TWO-DIMENSIONAL FLOW. . Al

VALUES OF THE SHAPE FACTORS A AND 4 ........ .48

THE LIMITING VELOCITY CHANGE ................... £50

CHAPTER THREE - THE EQUATION FOR CURVILINEAR TWO-
DIMENSIONAL FLOW ................................... 58

THE EQUATION OF MOTION ........................ .58

A LINEAR TRANSFORMATION TO JET ORDIATES ....... £0

NONLINEAR TANFORMATIONS ................... S1

CHAPTER FOUR - DEYCI FL4W ANNULAR JET THEORY FOR
CONSITANT TOTAL R .... . .0.. . . .. ... ........ .£3

GENERAL MOMENTUM BALANCE CONSIERATIONS ...... £3

A Th.k Jet bhian (PLso' Goeometry) ........... £3

A ickJ et b abtto. . .o e ................ e.*..... A7

The Variation of Curvature Across a Thick Jet ...... S7

The Height Parameter ......... ......... .... .. 69

Three-Dimensional Effects .................... .70

vifi



SOME GENERAL RELATIONS FOR THE FLOW PARAMETERS

OF AN ANNULAR JET ............................... 71

The Local Jet Velocity ............................. 72

The Jet Mass Flow ...................................... 72

The Nozzle Momentum Flux .................... 72

Total Nozzle Force .......... ................... 72

Jet Power ................................ 73

Total Lift .............. . 0..... ............ 73

SOLUTION OF THE CURVED JET EQUATION FOR CONSTANT
TOTAL PRESSURE. .e..... * * %e *. eea......... . .. 73

Local Jet Velocity .......................... 74

Jet Maos Flow ........................... ... 74

The Nozzle Momeatm Flu.. . . . .a 9 .. e .. . . .a. . . . 74

Totdl Jet Fror* ... .0 *........ ..... 74

The Jet Oarvafre PUmeter..,,,,,,. ....... .. 75

MTZ .Dlk e P N .12 ,,,,,,, ................ 76

OtherRults. ,,....,,,t......,..........80

THE CUinON PRuin 2PA IRAM3TER.,,. ....... , ... .. 87

The General Ezpmirsou fokit 6 ...... ... *..... ..

The Constant Total Head Solution ................ 93

The Solution for Free-Vortex Flow (• 1.0) ....... 94

ix



The Solution for Exponential Theory Flow ( *7 = 0). . .94

GENERAL 9OLUTIONS FOR FREE-VORTEX FLOW WITH
CONSTANT TOTAL PRF MRE ...................... 95

Calhulation of Mass Flow ...................... 95

Calculation to the Local Velocity ..... ........... 95

The Nozzle Mometum Flux ..................... 96

The Total Jet Force ......................... 96

The Jet Power ................. ................. 96

Momentum Balanoe .......................... 96

GENERAL SOLUTIt5W POR CONSTANT PADRIU FLOW
(EXPONENTIAL THEORY) WITH CONSTANT TOTAL
PRESSURE .... .. .... •. • ... ...... ............... 97

The LJooalJMt Velocity ........ ................... 98

The JehIMassFlow... . .. ...... .. ...... .. .... 98

Tbe Jet ie No w* 0.. . .. . .. 0 .. .0 .. . . . . ....... . 98

lTe Nlag Ml'oNOe...................0..98

30HZ WZUMTAL RZWLTS AT CONNTANT TOTAL
pi w aU.3 . . . . . .e a 0 a 0 0 & a a. S * *.. .... . *.. . . .. 100

Tbe Anla Jet Te"t Rig . . o . .. . ... ........ .. . .100

Thel ZperimenG. ................ .... .. .. .. 100

In tm tation . a . . .. .4. .0. . . . . . . .0 .100

x



Flow at the Throat .......................... 103

Flow at the Nozzle ................. ......... 103

Flow Adjacent to the Annulas r Jet ................. 110

CHAPTER FIVE - THE EFFECT OF TOTAL PRESISTE VARIATION
AC(ROSS AN ANNULAR JET .............................. 116

THE SPECIAL CASE OF CONSTANT JET VELOCITY ........ 116

Determination of the Jet Curvature Pa!m.metev ...... 118

Calculation of +,,For Free-Vortex I low ......... 118

Calculation of T. for Constan+ Radiua Flow ........ 110

Discussion of Results ....... ................. 119

THE INFLUENCE OF THE TOTAL PRESSJRE DETEBUTION
ON CUSHION PRESSJRE IN rERNS OF MEAN TOTAL PRESSURE,
FOR FREE-VORTEX FLOW ...................... * * .122

The Jet Thickness Anomaly .................... 126

A Gemeral Llinsa Varatiom.................... 131

A General Pow Iaw VW0tka........... ..... 13

CUSMoN iPti AS A MTI0 OF NUtN TOTAL pMWERX
WiT A LE&A VARKTW IN TOTAL PMn ACWUW THE
JET (EtPOKENTAL THIBOG) . .*. . .*. . . . . . . . . . . . . . . .a 134

THE EFFECT OF A LWIER TOTAL qD VAMRITION OF THE
CU IUUON PRERZ PAAMETER A ....... 137

Variation in Cuswion Presaure Parameter Acoording to
Ezponential Flow Theory With a LInear Gradient of Total
Pressure Across the Jet . ........... a 0 . . a 0 . a .139

xi



Variation in Cushion Pressure Parameter According
to Free-Vortex Flow With a Linear Gradient of Total
Pressure Across the Jet ...................... 141

Discussion of the Results ...... . . ............ 144

CHAPTER SIX - VISCOUS MIXING EFFECTS IN THE ANNULAR JET. .147

THE "AIR FRICTION" CONCEPT ..................... 154

A GENERAL THEORY OF MIXING LOSS ................. 162

THE STATIC PRESSURE IN THE PRIMARY VORTEX. ....... 174

CHAPTER SEVEN - A SMALL PERTURBATION THEORY OF DIFFUSION
LOSSES IN AN ANNULAR JET NOZZLE ...................... 176

APPROXIMATE SOLUTION FOR A "STRAIGHT" NOZZLE .... 179

MEAN TOTAL PRESSURE LOSS ...................... 180

TOTAL POWER LOW DUE TO DIFFUKON. .............. 182

CHAPTER EIGHT - CCAM JET FLOW ..................... 185

SOLTI1ON FOR COWNTANT TOTAL HEAD..... .......@ a 186

APOUM&TR SOLUTIO FOR THE BOUNDARY LAYER

CHAPTER MWE - TWO-4UUKAL FLOW IN A CURVED DUCT

WITH COUIUIAII' TOTAL BRAD............... .. .0. 0 .. .a 195

$?ATIA PROSURE AND VELOCITY DITMUTION ........ 196

THE CONSTANT VELOCITY STREAMLINE .............. 198

MAN FLOW DWfSUTION AROUND THE BEND......... .200

TOTAL HEAD LOW ON THE OUTSIDE OF THE CONSTANT
VELOCTY SrRAMLINE .. . ....... ... 0. ........... 200

xii



TOTAL HEAD LOS ON THE INSIDE OF THE CONSTANT
VELOCITY STREAMLINE .......................... 203

MEAN TOTAL PRESSURE LOSS ACROSS THE DUCT ........ 204

THE LOSS INCREMENT DUE TO SKIN FRICTION .......... 204

COMPARISON WITH EXPERIMENT .................... 206

*kPTER TEN - FLOW INTO A TWO-DIMENSIONAL FLUSH INTAKE .208

MOMENTUM EQUATIONS .......................... 210

THE FLOW EQUATION FOR CONSTANT TOTAL HEAD ...... 211

INTAKE MASS FLOW .............. 212

THE FLOW CURVATURE PARAMETER 7 FOR CONSERVATIDN
OF MOMENTUM ............................... • o213

THE STATIC PRESSURE DSTRUTION A#.......e ..... .214

LIMIT SOLUTIONS FOR 0, =WANT..... 216

SOLUTIONS FOR7 1. 65 a WWrAXT ...........217

TUE FLOW XWATION WrE £1 UMI!AM AA DA SA

LAYER ................................. .... 219

SOLUTION F(t A T= UfT91801 SWIAXY LAYTIM..... = 1

UoMI 32x3NNEITAL M3Amn33yS............... 23

Intak Pom Ima/ems................... .... u

Ezpsrbnw 09 b9a MeaduWsmZ o li Powr EIWmoy.. 22s

Calibratioa of Yaw Prbo, for Static Prumm
Mesrenm t ............. .................

xiu



Comparison With Theoretical Values ......... s . a229

Comparison with Zero Tunnel Speed Case ........... 237

CHAPTER ELEVEN - SOME GENERAL PROBLEMS OF A JET DIS-
CHARGING ACROSS A FREE-STREAM FLOW .................. 240

THRUST LOSS DUE TO MDIING ...................... 240

SOURCES OF APPARENT JET DRAG COMMON TO ALL JET
CONFIGURATIONS ............................... 243

The Effect of Pressure Due to Free-Stream Flowv ..... 244

The Effect of "Boundary Layer Pumping"............ 247

Jet-Induced Turbulence ..... .......................... 248

Nozzle DifW sion Losses ...................... 249

A SIMPLE HYPOTHEMS FOR JET PRESURE IN A FREE-
STREAM FLOW.. . . * % * s .. .e. . . . * . e. .. . . * . *. . . .. ... . 250

KZ EXPZISKMlAL OUBVATVMION................ .24

Flmws m ,mre ft Pi 9boond ................ 254

Veassla In f hr Isoand ............ . ..... 254

11DWYM MI o • woeK .................. 265

Amoder. 1'hoo9M .......... ...... .. ...... 265R3O~m3 mM b.. 18 5Tbm .... * a o *, . e . o # o. * o e * e 266

er d Daet Flow T ory.... .. .. .. ... .... . ..

Coema Flow .. .... ..... .. . ......... 267

Diffniouu Theoy . ..... .... . . e. . . #.... 267

Jet Flap Theory. ......................... .27

xiv



BEBLIOGRAPHY .................................... .268

APPENDIX I- SCALE EFFECT IN AINULAR JET FLOW o......... 273

APPENDIX II- ESTIMATION OF DRAG FROM TOTAL HEAD
SURVEYS ... o o~~o....... o es... *........ . .. . .. . . ...... 277

APPENDIX III - A NOTE ON THE THEORY OF A FREE VORTEX .... 278

APPENDIX IV - DIFFUSION LOSS MEASUREMENTS IN A PRE-
CURVED NOZZLE .............................. .. . . . .281

xv



LIST OF ILLUSTRATION'S

1 Curveca Flow Fields Considered in This Report. .... 2

2 The "Thrust Hypothesis" for a Jet Flap in Inviscid Flow . 3

3 Centrifugal Force on a Curved Jet Element. . . . . . 5

4 Borda-Carnot Diffusion ....... ............ 6

5 Chaplin's Curved Jet Geometry ............ 10

6 Physical Interpretation of the Constant Radius of
Curvature Jet . . . . . . . . . . . . . . 11

7 Pinnes' "Free Vortex" Assumption for Annular Jet Flo .- 13

8 Effect of Ground Clearance on Jet Radius of Curvature . . 15

9 Comparison of the New Invisoid Flow Theory With
Previous Theories. . . . . . . . . . . . .17

10 Comparis of the New Iviscid Flow Theory With
Some Zpsrimental DN(@ ( - . . . . . . . . is

11 Momemtum Balano. Geometry. . . . . . . . . . 19

12 Kqaivalese of A=mlw Jhi &d Oomd Jet rlows. . . . 20

13 Variation A 111 htUO # With the Mixing
PrSehsent &A. . . .*. . . . . . . 21

14 Variation of Aumeatatlom ' Ml. With Ditalan Wficieny,
Assuming Optimum Muixg Pressure. . . . . . . . 22

15 Variation of Entrainment Ratio With Jet Thiokmess for a
Right-Angle CoandlBsmd . . . . . . . . . . . 23

16 A Coanda Protile Designed for Maximum Thrust
Augmentation .......... . .. . 24

Xvii



17 Leading Edge Separation With Intake Flow . . . . . . 25

18 Twenty-Percent Elliptical Aerofoil in the Smoke
Tunnel. No Air Supply to Jet Flap . . . . . . . . 27

19 Streamlines Around the Elliptical Aerofoil When the
Jet Flap is Operating . ..... ............ 28

20 Jet Flap Experiment in the Two-Dimensional Wind
Tunnel. . . . . ....... ................ 29

21 Results of Total Head Traverses 3.25 Chords Behind
the Jet Flapped Aerofoil, With the Jet Flap On and Off . . 30

22 Observed Flow Patterns, With and Without Jet Flap
Operating . . ...... ..................... 32

23 Assumed Geometry. . . . . . . . . . . . .33

24 Geometry of Flow Through a Pressure Change. . . . . 35

25 Change In Momenoum Flux Through a Static Pressure
Champ for Oe-Dime /mtomul Flow . . . . . . . . 38

26 Cout d sd U tmatmd Flow Throug a
atio Prwe Cqp . . . . . . . . . . . . 39

27 Thewt• uhr9M d4 . . .h ...... ... 40

26 Two Jd 1im OswAjms . . . . . . . . . . . 40

29 A buss iet Zomwks . . . . . ... .. . . . 41

30 Vara'Wb ua a l&usm DlMsion . . . . . . . . . 42

31 Power Lost in a Sdden Difteaio, for a Uniform
Velocity Proms . . . . . . . . . . . . . . 47

32 A Family of Radial Velocity Distributions in a
Circular Dut .. .. ........ . .48

xvW



Variation of the SbAp IntegraIs X and AP With the
Shape Exonent w for the Power Law Family of Velocity
Distribations . . . . ........... 51

-"M Power Lost in a Sudden Dliusion, as a Function of the
Velocity Distribution Profile . . . . . . . . . . 52

35 Variation of Velocity Ratio AIMSIA.,, With the Pressure
A.•se Parameter Cp , For Similar Profiles . . . . . 5&

36 Varlatloa of Total Pressure Loss With Static Pressure6
Rise, For the Case of Uniform Velocity Dixtribution. . 55

37 The Elemental Geometry of the Curved Flow Field . . . 58

38 A Flow Which Has Infinite Radius of Curvature at the
Center Line . . . . . . . . . . . . . . . 62

39 Potential Flow Solutions by Gebbay Applied to the Plenum
Chamber Problem . . . . . . . . . ... . . 64

40 "Thin Jet" Geometry in the Abseme of Vinooua Mixing . . 65

41 Geometry of a Thiok Ainlar Jet With No VsoaM Mixn . 68

4a aen"of a c/z--_bwam .. . .. .To

43 rOmetrya~ lwmdT rGUa . . . . . . . . . 7048 Crosee-lt at Upelesm (1U0 M (180 To Detezmle
Vahee for the a*t OarvAM 1sxsewr (Mutton

brmme• -mwum• s ... . . .* 77
44 Vaulsom of ad~v Fammiar It WUt tdo

45 Jet Thiowese at Anmtle Pramm , as a AFUMAJof tt4e
Nowgl Parameter 4*A (lamed an Coutmbo of masn
Fplow) . . . . . . . . . . . . . . 79

46 momentum Salome as a Fution of the Hftef
Parameter / . . . . . . . . . . . . . . S6

3xi



47 Variation of Cushion Pressure With the Height
Parameter . . . . . . . . . . . . . . 82

48 Discharge Coefficient CO as a Funt.tlon of the Height
Parameter *. . . . . . . . . . . . . 83

49 Comparison of Theoretical Discharge Coefficiebts for
0 =0 ................. . . . . . . . . 84

50 Comparison of Theoretical Discharge Coefficients for
S = 30 . . . . . . . . . . . . . . . . 85

51 Comparison of Theoretical Discharge Coefficients for
0 = 600 ........ .............. . . 86

0:2 Tot-l Nozzle roroe, Measured Parallel to the Nozzle
Axis, as a Function of the Height Parameter %4. . . . 88

53 Comparison of Discharge Coefficient Ratio •4 for
Two-Dimensional and Circular Planform GEMs (0 = 00) . 90

54 Effect of Planform on the Cushm Pressure
Parameter I4A . . . . . . . . . . . . 91

55 The Anualar Jet Teot Rig With Ss Pawel Removed To

No No, C, ftivrim ft-ja•. 1.o 0 -300) . . . 101

56 Internal Dimensios of Annular Jet Tont Rig . . . . . 102

57 Velocity and Presm Distribution In the Throat of the
AmmilarJet . . . . . .*. . . . . . . . . 104

58 Premsures and Velocity at Nozzle Exit 1. 0
0=300 XL=-.10nches * * * . .. . . 105

59 ledhstributlon of Power in Annlals Jet . . . . . . . 111

60 Static Pressure Variation Across a Jet - Comparison
of Theoretical and Experimental Values. . . . . . . 112

61 Pressures and Velocity in Annular Jet and Cushion.
(Flat Cushion Board 1.0 0 . 300) . . . . . . 113

xX



62 Pressures and Velocity In the Annular Jet and Cushion.
(High Cushion Board 1.0 = 300) ..... 114

63 Jet Total Head Distribution Needed to Give Constant Jet
Velocity . . . . . . . . ... . . ............. 120

64 The Cushion Pressure Parameter Aft as a Function
of the Height Parameter R/4t . . . . . . . . . 121

65 Comparative Effect of Constant Jet Velocity and Constant

Total Head on Cushion Pressure Per Unit Air Power. . . 123

66 Symmetric and Asymmetric Jet Total Head Profiles . . . 125

67 Geometry for the Jet Thickness Anomaly .. ...... 126

68 Two Rectangular Total Head Distributions . . . ... 127

69 Solution Limits for the Rectangular Total Pressure
Distribution ,-

70 Effect of a Stopped Rectangular Jet Total Head

Distrbution Upon Cushion Pressmre. . . . . . . . 130

71 Gmeral Linear Variation . . . . . . . . . 131

72 Efet of a Linearly Varying Jet Total Head Didtrbution
UponOushionPel seure. . . . . . . . . . . 132

73 Gemeral Power Law D-trto. . . . . . . . . 133

74 Cushion Pressure as Affected by a Liner Distribution of
Total Head Ptesure in the Jet (Epomeantal Flow). . . . 136

75 Cushion Pressure as Affeoted by a Linear Distribution of
Total Head Pressure in the Jet (Etonential Theory) . . . 138

76 Cushion Pressure Parameter With Linear Gradient of
Total Pressure Across Jet - Free-Vortex and Exponential
Flow .* . . . . . . . . . . . . . . . . 143

77 Pressure Distributions in Jets . . . . . . . . . 146

xxi



78 Some Experimental Measurements on the Cushion 149
Pressure Parameter at 0o .. .... . . .

79 Assumed Equivalent Linear Total Head Distribution
Across the Kuhn and Carter Model Jet .... ..... 150

80 Increment of the Cushion Pressure Ratio Due to Total
Head Distortion in the Kuhn and Carter Model. . .*. . 151

81 Data of Figure 78 With the Kuhn and Carter Results
Corrected to Two-Dimensional Flow With Uniform
Total Head .. . .. * . * * . . . * . 152

82 Curved Jet Flow Field in Ground Proximity. . .*. . . 15-'

83 The "Air Friction" Theory of Viscous Losses in a
Thick Jet Compared With Inviscid Flow Theory for

=00 . . . . . . . . . . . . .... 157

84 Effect of Nozzle Extensions on the Cushion Pressure
Ratio(0 o00) . . . . . . . . . . . . . . 159

85 Nffoat of 2 aio/ng the omor krface of the Jet When

Nossle ZSamIca sArcUUsed . . . ... . . . . . 160

86 lefoad A-ze o- Data of Flogre 85. . . . . . . 161

S7 Mzi ias the AnslarJet . . . . . . . . . . .162

8 Two Way dof PozM• dto Overfd Jet. . . . . . . 1

so Theoroedia Loss Is Cushion Pressure Caused by

Viaoom sMz ( 0 a 0) . . . . . . . . . . . 172

90 of~ Vicm173TeryWt xprm
.0 a a. 0 a 0 * 0 a 6 a 17

91 Prim• y Vortex Pressure as a FIunction of Hover Height
(-o')0 so*$. .s. 175

92 Baic Geometry of Nozzle Dimsilon . . . . . . . . 176

xxii



93 Static Pressure Distribution on the Inside Nozzle Wall . . 177

94 Static Pressure Distribution on the Outside Nozzle Wall . • 1781

95 Approximate Total Pressure Loss Due to D/lfsion for
*k = 1.0, in a Straight Nozzle. (Based on the Exponential
Theory Static Pressure Distribution). . . . . . . . 181

96 Mean Total Pressure Loss as a Function of the Height
Parameter RI/ for a Straight Nozzde. (Based an Approxi-
mate Exponential Theory Static Pressure Distribution) . . 183

97 Basic Geometry ............ . 185

98 Separation of Coanda Flow. . . . . . . . . . .187

99 Variation of WAll Pressure With the Jet Tholwmass
Parameter . . . . . . . . . . . . . 188

100 Variation of Local Difst IMsiMol y With Lowal

VelocityRatio . . . . . . . . . . . . 0 . 19.

101 Flow spartonia Curv ket. . * , , . . 9. 6

102 Camels ble Uoft Owe Gomwd Thes DwehpdI.This , . . . . . .. . . . 186

103 Au dmed . . , , , , . • . .* .192

104 vaui"M .1 inw sad d am TOWNu Wok
dtAmpe ~te . . , . , . . . • • . .188

10o Poe#sM @d *S ofemw VuTsoy IWam e . . . . . Sol

106 naow of mass Fvw Ian l O b6 unu Comt V.ootty
aSrenmla etothsTeOW W"eetlw . . . . . . .. 20e

107 Average Total Head Lass AremW a Oeeast Dat
ThlickasSend. . . . . o. . . . . . . .206

108 Comparison Between Theory ad ZVpeurmet 1ow a
Rigft-Angl. Bend . . . . . . . . . . . . . S20

xxiie

zx~f



109 Flow Into a Flush Intake ........ . .208

110 Flow Into a Flush Intake . . . . . . . . . . . 209

III Variation of I With ZIw, for Uniform Inflow
( A% = Constant). . ....................- 215

112 Variation of Inlet Velocity With Intake Lip Radius.
(Exponential Theory for AAI )...... ...... 218

113 Variation of Inlet Velocity With Intake Lip Radius.

(Free-Vortex Theory fors, - 1. 0) . . . . . .*. 220

114 Arrangement of Intake in Floor of Wind Tunnel. . . .. 226

115 Location of Measuring Stations . . . . . . .*. . 227

116 Total anu Static Pressures in Intake. . . . . . . . 230

117 Velocity Vector Profile at Mouth of Intake . . . . . . 231

118 Velocities at Mouth and at Throat of Intake. . . . . . 232

119 Theoretdcal Velocity Distributions for the Test Intake
(Unom Inflow) . . . . . . . . . . . . . . 233

120 Cross-Plat of Intake Velocity Ratio, as a Function of

4,IA'. hw the Test bUM. (jConservation of Momentum
Coneaatim Betweenm 7 adyl ). . . . . . . . 234

121 Cr*es-Pih Of bMa VelOt atio, as a Fwaotion of
;60, ter tdo ?es* bake. (Comaerivation, of Mamie Flow

Coridelaim Dstlowssa andtj/.4,) . . . . . . . . 235

122 a of 2po•smeotal and Theoretical Velocity
at lMoi . . . . . . .0 . . . . . . . . . 236

123 Reenmblae Between (a) Velocity Profile in Upstream
Boundary Layer and (b) Velocity Difference (Theoretical-
Zxperimental) Near Upstream Wall of IntakeI Throat . . 2 236

124 Total Pressure in Upstream Boundary Layer ..... 238

xxiv



125 Spanwise Distribution of Velocity at Mouth of Intake . . . 238

126 Velocity at Throat of Intake - Tunnel Speed Zero and
90 Feet/Second. . . . .... ............... 239

127 Jet Drag Due to Entrainment in a 90-Degree Jet Flap. . . 242

128 Some Effects of Nozzle Shape on the Discharge Coefficient
Under Static Conditions ..... ............ 243

129 Jet Issuing From a Body in Inviscid Flow . . . . . . 244

130 Boundary Layer Entrainment in a Jet . ........ 247

131 Jet Influence on a Wake. . . . . ... ........... 249

132 Nozzle Diffusion Losses . . . . . . . . . . .250

133 Jet Flap in Inviscid Flow .. . . . . .250

134 Smoke Tunnel Flow Observations of a Jet Flap ... 251

135 Local Jet Geometry. . . . . . .*. ... * * 252

136 Pressure Intepral on the Uj Btree 8id a jet
xhausted Nornml tosFre-rim . . . . . . 256

137 Arragemedt of Jet D llms Through Floor of
WindTunel. . • . * • . • • .. . . 57

138 velocity Oad Pressur DwInW Dow-rem Flow JOt.
(Jet/Free-tureeM Veleafty USo 0.W) . . . . .*. . 256

139 (a) Velocity sad Pressure l 1 t Mouth of Jet.
(Jet/Free-Stream Velocity A ot S. 0W). (b) Velocity
and Pressure Dlstr/iostia In Jet Throat. (Jet/Free-
Stream Velocity UAtjo 0. 4) . . . . . . .. 269

140 Velocity and Pressure Distribution Downstream From
Jet. (Jet/Free-Stream Velocity Ratio 1. 34). . . . . . 260

xxv



141 (a) Velocity and Pressure Distribution at Mouth of Jet.
(Jet/Free-Stream Velocity Ratio 1.34). (b) Velocity and
Pressure Distribution in Jet Duct Throat (Jet/Free-Stream
Velocity Ratio 1.34). .. . .. . . .. 261

142 Velocity and Preshure Distribution Downstream From Jet.
(Jet/Free-Stream Velocity Ratio 2.88) .... ...... 262

143 (a) Velocity and Pressure Distribution at Jet Mouth. (Jet/
Free-Stream Velocity Ratio 2.88) . . . . . . . . 263

(b) Velocity and Pressure Distribution at Jet Throat.(Jet/
Free-Stream Velocity Ratio 2. 88ý .. ........ . 264

144 Apparent Effect of Reynolds Number on the Cushion
Pressure Ratio . . . . . . . . . . . . . . 275

145 Effect of Nozzle ftn Friction Loss on Apparent Cushion
Pressure Ratio . . . . . . . . . . . . . . 276

146 Geometry of a Two-Dimensional Vortex. . . . . . . 278

147 Total Pressure Los at the bidt Pk me of an Aumilar
JetNonle , . ............. 282

X01



SYMBOLS

The prefix A denotes an increment of the appropriate quantity. When it
prefixes a pressure, it denotes that the pressure is "gauge"; that is, the
pressure is measured relative to ambient static pressure Pa.

E.g., &P P- P

In general we employ the conventional X and V axes wherever possible.
In different parts of the report the same symbol is sometimes used to denote
different quantities. This is unavoidable because of the large number of dif-
ferent topics discussed, but the precise meaning is always made clear in the
text when this duplication occurs.

Where special symbols are defined and used in only one place in the report,
they do not appear in the following list.

A an area

A¢ cushion area

e' periphery or lmgth of a jet

, coefficient of discharge

or a a drag coeffliient

skin friotion ooeffioit ao a solid bwundary

Sapparent skin friction coseficient at a fluid interface

(. a pressure coefficient ( )d4~
4.Ir coefficient of local skin friction stress

.ID diameter of a circular planform onM
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F a force

Fw total nozzle thrust

.• height of an annular jet nozzle above the ground plane

or 4 a dimension specified in Figure 23

a total pressure loss

T a momentum flux

(le.w &I , for example)

-TI4 nozzle momentum flux

K a constant

Of an exponent

A a mass flow rate

At etrained air ntio

P a statw proem"o

P a towalpresmure (~r4 # for example)

V a pow=r

• a cushion presmure parster defined in Equation (142)

a dnaic presur ( fmor example)

e a radius, usually the local radius of a curved Jet

eo inner radius of a jet

Router radus oc ajet
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t nozzle width or jet thickness

I thickness of a jet at ambient static pressure

44 velocity parallel to the X axis

W. free-stream velocity

A
.v a mean velocity

A)` velocity parallel to the I axis

or 4P a resultant velocity

W width of a rectangular duct

2 a height parameter z f& . s')

or W distance along the Jr axis

a height paxamoter a I a+ - f MD)

distance aluag the ýfaxis

distance across a Jet

& an elemental mass

Sa flow curvature param eter

or r an efficiency

I angle at which a jet is inclined Inward from the vertical

a velocity profile shape factor defined in Equation (48)

1A4 coefficient of fluid viscosity
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mass density of the fluid

"1 local skin friction stress

San augmentation ratio (total thrust/primary thrust)

Sb a velocity profile shape factor defined in Equation (53)

or # a parameter defined in Equation (258)
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Chapter One

SUMMARY AND DISCUSSION

Although It is more usual to have a "Discussion of Results" near the end of a
research report, the diffuse nature of the present progra-. seems to render a
different approach more appropriate. Accordingly we shall review the program
in a fairly general way in this chapter, in order to place it in a proper perspec-
tive. Subsequent chapters will deal with the details of the various investigations.

THE FUNDAMENTAL PROBLEM

"Underlying the whole of this program is the central phenomenon of a subsonic
fluid flow field which is not rectilinear; that is to say, one which is constrained
in some way to flow along a curved path. Some examples of practical problems
which involve such flows are sketched in Figure 1,and it is evident that our study
is not lacking in practical utility.

Until quite recently, practical aerodynamic theory was almost entirely based
on the assumption that air was inviscid. Viscous effects were considered only
to arise in the boundary layer, as first suggested by Prandtl, and simple meth-
ods were evolved for applying viscous effect "corrections" to the various in-
viscid flow theories. The reason for this was that the viscous shear stress in
a fluid is proportional to the local velocity gradient; that is,

stress M

so that, if •is• in small, the viscous fore" are negligible. Prandtl
showed that the velocity gradient M negligibly small in practical flow fields,
except for a very thin layer of fluid close to a solid boundary. Thus, by re-
garding this boundary layer as part of the body, wo can use inviscid flow theory
to determine the main flow field. TIh details of the boundary flow can then be
treated as a separate problem; most usually, in fact, we do not need to study
the boundary layer, but rather should represent Its effect by an empirically de-
termined "skin-friction" loss coefficient.

The foregoing might appear to relegate the boundary layer to a position of
negligible importance in engineering serodynamics. This is by no means so,
of course, since it is responsible for most of the drag of streamline bodies and
also is the controlling factor in separation of the flow ("stall") from the surface
of a body. Until quite recently, however, and excluding some special cases,
these problems have 'een dealt with on an entirely empirical basis.
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(a) Flow into a horizontal (b) Annular jet flow.
intake.

(a) Flow in a c-.rved duct.

(d) Coanda let flow.

Figure 1 Curved Flow Fields Considered in This Report.
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A jet is a stream of air which has a velocity markedly different from the main
body of air being considered in a problem. A conventional jet is moving faster
than the surrounding fluid, but it is no different, in principle, from the "negative
jet flow" into an intake, Figure 1(a), or the wake behind a body. In all cases there
exists a substantial velocity discontinuity at the surface of the jet so that, from
Equation (1), viscous forces become important.

Jets did not play a significant role in aerodynamics until the advent of the gas
turbine for propulsion; even then, it was the propulsive force obtained, rather
than the finer details of the jet flow structure, that received most attentim. The
propulsive force depended on the flow condition at the engine exit nozzle, not on
what happened downstream.

The advent of the jet flap, annular jet, and other similar concepts markedly
changed this picture. For the first time, a jet was being used to influence the
main flow field, and the characteristics of the jet after it left the nozzle were
found to be the controlling parameters.

Early investigators tried to tackle these new problems with the well tried in-
viscid flow theory techniques, not only with limited success, but sometimes
with nonsensical results. The famous "thrust hypothesis" for the jet flap is
a good example of this.

- Wo . . --

tD

Figure 2. The "Thrust Hypothesis"t for a Jet
Flap in Inviscid Flow.
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Davidson's original hypothesisI is illustrated in Figure 2. If the control bo, nd-
aries are drawn far enough away from a jet-flapped wing,it can be shown that
the horizontal momentum flux out of the box is greater than the flow in, by the
amount 3*. Thus, although TT is a vertical vector at the wing, we must ex-
pect a horizontal (pronulsive) force ZJ. to appear on the wing.

In inviscid flow, both Davidson and Stratford2 assumed -To = T , so that
all the nozzle jet reaction should appear as a thrust force on the wing.

At the risk of being a little pedantic, perhaps, we should note that the total
nozzle force ( F" ) is greater than •. The correct relationship for in-
viscid flow is

Fs4 #(2)

where = mesa static preseare at the nozzle

PM = jet total head at the nozule.

Equation (2) is always somewhat less tha u/ty, so that the "thrust hypothesis"
is only approximately correct, even in inviscid flow.

In a real fluid, free-stream air mixes with the jet. Payne has shown that,
when such mixing takes place at a pressure which is greater than ambient, the
final momehtum flux is always roduced. In other words, the loss cf free-streai
air momentum is greater than that gained by the Jet. Calculations show that the
redactiom in rM caused by this effect adequately explains the measured "thru
lose" of a }et flap at high defleotion angles, even though there are some small a
ditsW losses (srck "s nozzle diffusion loss) which will be identified in subseqi
postlms e9 this repo01.

We conclude, therefore, that jet flows cannot, in general, be explained by in-
viscid flow theory. Thus, a large part of the present program has been devoted
to developing methods which allow viscous effects to be calculated.

Curved Jet flows present the same general problems as rectilinear jets but
with the added complication of centrifugal acceleration effects, as indicated
in Figure 3.
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Figure 3. Centrifugal Force in a Curved Jet Element.

Since the centrifugal forces must be balanced by a static pressure gradient
across the jet, even the Inviscid flow field is fairly complicated in this case.
Although many attempts have been made, we know of no completely satisfac-
tory solution to this problem, so that development of an inviscid curved Jet
flow theory was the first task undertaken during this program. This was
then used as the basis for corrections due to viscosity. Largely because
of the terms of the initial work statement, this theory has been most &ully
developed and experimentally confirmed for the annular jet case. This has
no particular significance, of course, and the general theory, with appropri-
ate end-conditions, is equally applicable to any of the problems sket•cbed in
Figure 1. It isbelieved to be % powerfil tool for the solutien of a very large
class of subsonic flow problemo, and it was naftrally impossible to develop
its full potential in the present program.

DIFFUSION LOSSES

A viscous fluid can be acoelerated without ihcurring Important energy losses,
so long as compressibility effects a not enoountered. The process of slow-
ing down a fluid -- diffusion -- always involves large energy losses, however.
Thus,diffusion, and its associated phenomena of energy loss and flow separa-
tion, constitutes perhaps the most important problem in subsonic fluid dy-
namics. Paradoxically, it is a problem which has received relatively little
attention, so that today the position is the same as it was decades ago, at
least so far as minimizing diffusion losses are concerned.
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Figure 3. Centrifugal Force in a Curved Jet Element.

Since the centrifugal forces must be balanced by a static pressure gradient
across the jet, even the Inviscid flow field is fairly complicated in this case.
Although many attempts have been made, we know of no completely satisfac-
tory solution to this problem, so that development of an inviscid curved jet
flow theory was the first task undertaken during this program. This was
then used as the basis for corrections due to viscosliy. Largely because
of the terms of the initial work statement, this theory has been most fully
developed and experimentally confirmed for the annular jet case. This has
no particular significance, of course, and the general theory, with appropri-
ate end-conditions, is eqaally applicable to any of the problems sketched in
Figure 1. It sbelieved to be * powerftl tool for the solutio of a very large
class of subsonic flow problemij, and it was naturally Impossible to develop
its full potential in the present program.

DIFFUSION LOUSES

A viscous fluid can be accelerated without iicurring Important energy losses,
so long as compressibility effects are not encountered. The process of slow-
ing down a fluid -- diffusion -- always Involves large energy losses, however.
Thus,diffusion, and its associated phenomena of energy loss and flow separa-
tion, constitutes perhaps the most important problem in subsonic fluid dy-
namics. Paradoxically, it is a problem which has received relatively little
attention, so that today the position is the same as it was decades ago, at
least so far as minimizing diffusion losses are concerned.
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Needless to say, the static pressure gradient generated in a curved Jet flow
means that diffusion must occur at some point. Hencewe were very concerned
to find some way of analytically predicting the associated losses.

Even before the present program began, we noted two peculiarities. The first
of these was the empirical observation (References 5, 6, and 7) that diffusion is
possible only down to a velocity of about half the initial value, unless some
means of renewing the boundary layer is used (multistage diffusion, boun-
dary layer suction, etc.) The second point of interest was the fact that sim-
ple "Borda-Carnot" momentum theory for a rapid diffusion in a pipe gave very
good agreement with measured losses.

Figure 4 Borda-Carnot Diffusion.

The Borda-Carnot theory tended to be an isolated theoretical oddity, out of
the main stream of fludd-dynamic theory, but we felt that it might offer im-
portant clues to more eneral oases.

In developing this theory In a more general form,we found that it tied in with
the first (empirically observed) peculiarity In a very surprising way. If the
"velocity profiles before &ad after diffusion were mathematically similar, then
the theory showed Us the mean velocity ratio could not beless than 0. 5. If
the velocity profiles were dissimilar, then the maximum theoretically attain-
able difsion varied In the same manner as Indicated by boundary layer theory.

Obviously, it would have been desirable to follow up this clue, since we may
well be on the threshold of a "unified theory" of diffusion. Unfortunatelythe
level of effort required was not possible under the present contract. However,
it was possible to feel some confidence in the generalized (two-dimensional)
diffusion theory produced during this part of the investigation, even though
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its derivation, and certainly its application to some of the curved flow prob-
lems, could not be described as rigorous.

An interesting example of the application of the diffusion theory is the curved
duct problem of Figure 1(e). The curved flow theory shows that, at the start
of the bend, there is a sudden increase in static pressure on the outside wall
and a reduction on the inner wall. At the end of the bend the situation is re-
versed, so that two diffusions occur: one on the outside wall at the beginning
of the turn, and cae on the inside wall at the end of the turn. By using the in-
viscid theory to calculate these pressure distributions, and then applying the
new diffusion theory, we can calculate the total head lost in the turn. Not
surprisingly, as shown in Chapter Nine, we find that, for two-dimensional flow,

Total head lost duct width
initial dynamic head - radius of curvature

Although no two-dimensional flow test data is available for this case, we find
that extrapolation of the available three-dimensional data gives excellent agree-
ment with the calculated theoretical loss. This obviously opens the way to
significant Improvements in the design of low-loss duct beands.

We have also applied this diffusion theory to the calculation of the total head
lost in an annular jet nozzle. O(we apain, the agreemet with experlment is
good, both so far as total loss is conoermed and for te loss distribution
across the duct.

When applied to d after a Coaus flow, the theory gives rather larger
losses than for an oqaivalest pipe bead, but mhsbatuiy, we kow of no ex-
perimental data which cm be usd for a - Pa"Moses in this case.

In summary, the mw dimftdoa theo dow-plod -1 di the course of this
program is apparently capabl of dealing wib reltively sadden pressure
rises in two-dimensionml flow sad can ( smbly) be eotemdd to three-
dimensional flow problems. A very lited comparison with experlment
indicates good agreement, but abstantidally more work will have to be done
before we can feel confident of It, beoause its basic derivation is not mathe-
matically rigorous, at least for curvilinear ar laons.

In the following sections of this chapter we shall briefly summarize the basic
work done on viscous mixng, curvilinear flow, and diffusion loss in the prac-
tical applications considered in this report.
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ANNULAR JET THEORY

As for all of the problems considered, the basic differential equation for
curvilinear flow applies to the annular jet problem. This equation is

dev. 41 1(3)

Here is the local static pressure
is the local total pressure
is the local radius of curvature

In the following paragraphs we shall describe the solutions to this equation
obtained by the investigators who pioneered annular jet theory. With the
benefit of hindsight, we shall derive their solutions, from Equation (3), in
one or two lines of analysis. This in no way detracts from their achieve-
ments, of course, because it is always easier to follow than to find a way.
Also, it is doubtful that they realised that their problem was really the
solution of Equation (3); rather, each appeared to formulate the physical
description of the problem in a less fundamental way. Only in the present
investigation has it been realized that Equation (3) is the starting point
for all the formulations.

We shall also Ignore, for the time being, the potential flow solution of
Strad 1 4 , sinoe this is based upon am entirely different analysis. Strand's
work was by far the most sophisticated attack on the annular Jet problem,
of course, and best agres with the theory developed in this report over
most of the operating belht range. It suffers from a serious flaw, how-
ever, in that it deviates from kow potential flow solutions as the nozzle
approaches the ground plane, a defect which the present theory avoids. In
the limit 41V -P , for meaple, the discharge coefficient approaches
0.5, instead of the known solution of approximately 0.62 for a slit.

The reason for this is not known. Strand himself, in verbal discussions
with the senior author of this report, could only suggest a possible reason;
thus an attempt to explain this anomaly is hardly likely to be fruitful.
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Mn (i1susIfing inviscid flow solutions to the annular jet problem we shall not
curpare results with experiment. Many investigators have shown that real
(viseeous) annular jet flows generate relatively strong secondary flows, so
Oiatt there is ohviously a significant loss in cushion pressure, relative to the
ideua inviscid fluid case. Also, as shown in the present report, there is a
slnificant nozzle diffusion loss. Thus any appeal to experiment, as a means
1d judging an inviscid flow theory, is obviously likely to be unsatisfactory. In-

deed, wc might almost go so far as to say that an inviscid theory which agreed
with exxperiment must be wrong, since the theory should not contain the viscous
mixing and diffusion losses.*

S!11APLIN'S SOLUTION (THIN-JET THEORY)

9
11ic first i ..... annular jet thcory %was Chaplin's , of course, where this

Equ-ation was expressed in finite, rather than infinitesimal, terms. By taking
-as a constant ( = • say), and assuming that the static pressure varies

inur'.r~ across the jet, that is,

(4)

then Chaplin obtained, in effect,

,c common with later investigators, he also assumed that the jet total pressure
.... was constant ( AP , say) across the Jet.

'tihs at the inner streamdinc (1 , ),

t- 2. 1ae (5)

iL, then calculated the radius of jet curvature ( R ),using the thin jet geometry
:-howvin Figntre 5.

!Since writing this report we have seen an excellent paper by Eames 2 7 in which
11 i oi't is emphasized.
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Jm
Figure 5 Chaplin's Curved Jet Geometry.

From this geometry, the clearance height (i) Is evidently given by

I.. R -0

W -6+S4) a (say). (6)

Thiu Cbap~als relaslaoblp for the oushion pressure (AhIj) becomes

-a Z O, (7)

It is found that this gives fair agreement with experiment for small values of
x (large hover hel~hts) but becomes progressively less accurate as the
height is reduced. When the vehicle is touching the ground ( ka o ), Equation
(7) gives A,&/IP1 = 2. 0, whereas we know that the correct answer should
be 1. 0; that is, because no air Is flowing, the total and static pressures are
equal.
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Chaplin recognized these limitations, of course, and specifically limited his
theory to "thin jets" in which -A > t .

As mentioned above, Chaplin assumed that the jet radius of curvature was
constant. To be more specific, he assumed it was constant along *he jet
because it divided two constant pressure areas: the "cushion" and the am-
bient air outside. He was Wble to show that the assumption of constant
pressure boundaries of necessity required a constant curvature.

He also assumed that the curvature was constant across the jet. This is
(mathematically) acceptable for thin jets, but gives rise to a rather mean-
ingless physical picture, since the jet vanishes at the ground plane. This
is illustrated in Figure 6, a thick jet being shown for clarity.

R R

aJt
Vanishes

Figure 6 PysIal IotoerPtSIon of the Constant
Ratus od Osralre Jet.

THE COSU-S-BTANTON-JONE5 SOLUTION I(XPONENTIAL THEORY)

Crosn10 and Stanton-Jrensu1 (the prcedmce cannot be determined from
the literature) extended Chaplin's theory to the oe of "thick jets". Their
only change was to reject the assumption of constant static pressure gradi-
ent across the jet, Eqiation (4). Blnoe they retained Chaplin's constant
radius assumption, their version of Eqaation (8) was
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Or, since *

-A (9)

This is a simple first-order differential equation with constant coefficients,
and the solution is well known. That is,

When we insert the end condition AP; = 0 at 0' = 0 (jet static pressure the

same as ambient at the outermost streamline) this equation simplifies to

J11
Ali I~e I(111

and the cushion psrsuure, which corresponds to the innermost streamline
(y, i"). is then

AR~ (12)

This equation tends to unity as the ground clearance height (4 ) tends to zero,
thus avoiding the most mportSmt limitation of Chaplin's solution. When com-
pared with ereeriseual u it gives quite good agreement. As a result,
the general theory wich follows from 2quation (11) is widely used in the in-
dustry. Yet if this agreement Is fortuitou, acceptance of exponential theory
could prevent the obtaining of a better physical picture of annular Jet flow,
and heoe prevent the discovery of more efficient ways of generating an annular
Jet.

PINNZS' SOLUTION (rREE-VORTX FLOW)

Exponential theory ts based upon an impossible physical picture, as we have
seen, since the Jet cannot possibly vanish as it strikes the ground. Pinnes12

chose to circumvent this by assuming that the Jet thickness remained constant,
as shown in Figure 7.
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Figure 7 Pinnes' "Free Vortex" Assumption
for Annular Jet Flow.

We can immediately see that this formulation must be to a "thin-jet" theory,
since if X < t , the outer radius ? will have to be negative, a physical
impossibility.

While retaining the assumption that any jet streamline will have constant
curvature along its length, the Pinnes formulation assumes that (f )
will vary across the Jet in a linear manner. That is,

-o ' M +; (1 3 )

This is a significant improvemed in rigor relative to exponential theory.
The basic differentil equatino now becomes

2 " 2
)tI (14)

The standard form solution then gives

! a /3 (15)
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and the cushion pressure ,.

- Z (16)

In this case /- = 1. 0 when • 1. 0, a result which is obviously in error:
due to the geometrical limitations noted above. Also, as X--* 1.0, the theo-
retical mass flow tends to zero. Thus,we have to conclude, rather paradoxi-
cally, that although the Pinnes formulation is more rigorous, it results in a
less accurate description of annular jet flow. In the sense that it pointed the
way to further developments, however, the Pinnes theory represented an im-
portant advance.

PAYNE'S CORRECTION FOR JET CURVATURE

All the previous theories used Chaplin's relationship (6) for jet curvature.
Payne 13 pointed out that this was correct only for zero jet deflection angle,
or when the jet was of negligible thickness. The correct relationship for a
jet of finite thickness (t ) is actually

e'- (17)

so that (say)~~ 18

in place of Chaplin's relationship given in Equation (6). In Reference .',
Payne showed that the available experimental data correlated better against
this new parameter X

THE ANNULAR JET SOWTIOM OF TEiS SEpORT

Although Pinnes improved the pysicWal representation of the annular jet at
large heights, be stopped shwrt at realizing a perfectly general description.
As indicated in Figure 8, his gemetry is approximately correct at large
ground clearances and the eapsatal theory (constant radius) geometry is
approximately correct for very low cleauanes.
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(a) Low Clearance.

(b) High Clearance.

Figure 8. Effect of Ground Clearance on Jet
Radius of Curvature.

At low heights the static pressure in the jet is high and the mass flow is low.
rhus, after the jet has expanded to ambniet pressure along the ground plame,
it is moving much hfstr, and ito thiohens ( a ) is mmoh less than the nozzle
thickness (it). Under thes omndii•lm, 40 Is omly a little less than R, and
exponential theory gives a good dsowrptica of the flow.

At high heights, there is little difforeme behtem the cushion pressure and
ambient, so that It., t. Under these oeeotions there is little change in
jet thickness and Pinnes wote gives a pod description of the flow. Thus
the two limits are

je as 4~.I

We naturally wondered if it would be possible to Interpolato these two limit
cases with a more general variation.
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When I - 0, we have exposential theoiy mad w 1m 1. 0 we have
free-vortex theory. In general, v will be between these two extreme
values.

As will be shown later, it turns out that such an itterpolation is possible,
and we [ind

.50i. 49(21)

Thus the local radius in $be lot is mo given by

1.~t / '476 (22)

Epaatioa (3) the b inmama

e+ ?;) (A# ;) j 23)

and the ginral sehlon in IN A-.

4%~(~."7) ~(24)

Note that In this eaation we have retained Atlet an arbitrary function of
(2 ), rather than assume it to be oonstant, ?s previous workers have done.
Ve shall find that a varlation in~ across the Jet Influences the cushion
pressure generated and that this din ba quite different from the result ob-
tained by assuming a constant total pressure equal to the mean value.
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Figure 9. Comparison of the New Inviscid Flow
Theory With Previous Theories.
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Figure 10. Compariscn of the New Inviscid Flow Theory
With Some Experimental Data (0 = 0°).
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For the case of uniform jet total pressure, the new theory is compared with
exponential and free-vorte,. theories in Figure 9. As we should expect, it
falls between these two limits, tending to the Pinnes solution above R.* = 4. 0.
In the intermediate range,it gives a cushion pressure which is quite significantly
greater than that given by exponential theory.

Referring now to Figure 10, which shows some experimental data in compari-
son with the new theory, we may wonder whether the new theory was worth de-
veloping, since all the data points fall below it! The theory is for inviscid
flow, however, and we shall see that when we correct it to allow for the effects
of nozzle diffusion loss and viscous entrainment in the jet, good agreement with
experiment is obtained. The older theories disregarded these effects and hence
offered no rational methods of minimizing them.

MOMENTUM BALANCE OF THE ANNULAR JET

An important offshoot of the analysis presented in this report is the concept of
momentum balance.

•F f r OP .7 7 7" ff F f P

Figure 11. Momentum Balam. Geometry.

Referring to Figure 11, it will be shown quite rigorously that, if R Is a
constant, then

where J,- is the momentum fluxto ambient and 44 is the effective Jet periphery
(jet length in the two-dimensioual case).
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This simple relationship is of considerable value, since It Is quite fundamental.
X

COANDA. JET THEORY

(a) Annular let flow (b) Coanda jet flow

Figure 12. Equivalence of Annular Jet and Coanda
Jet Flows.

As indicated in Figure 11, there is no difference, in principle, between the
annular Jet, which is curved outward by the cushion overpressure, and the
Coanda jet flow, 'which is curved inward by wall "suction". Equation (3) is
still applicable but the "end condition" of ambient static pressure is now trans-
ferred to the opposite side of the jet.

In the present investfpatiom we have considered only the free-vortex solution
(4b .SO ÷P ) p oUh as More gparalceof( Cs =f 4 47 may be moreo
applicable when the jet thlolmess is large.

One basic differsee in the overall flow system is the diffusion which occurs
at the ed of thec urved flow path (IK-X in Figure 12b). If the curve intersects
with a tangential stralgM wall, then the sudden disappearance of the centrif-
ugal forces in the flow must result in a sudden static pressure rise at the in-
tersection. This effect is amenable to the diffusion loss analysis mentioned
earlier, and we find that quite large pressure losses are to be expected when
the Jet is thick. Coupled with the skin friction loss and the static pressure
gradient across the Jet, this diffusion loss explains why laboratory studies of
the Coanda effect do not show any thrust augmentation effect, even though the
jet entrains ambient air at a lower-than-ambient static pressure.
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In Reference 3 (part of which was written under the present contract),ft was
shown that thrust augmentation occurs when a jet minss with ambient air at a
static pressure which is lower than ambient. As indicated In Figure 13, there
is an optimum static pressure for maximum augmentation; mixing at pressures
away from this optimum results in less than optinmum augmentation.

AUGMENTATION

-AppA

Figure 13. Variation, of waoi o • With
the Mixing Prom" Parameter 4.

Thrust augmentation is deffsed as

-Towsltbzsccf00Noo
Tnsti pof KNOW e etosif to Aui-iet

The mixing pressure parameter is

i- ttc presaien 9Which stm- occrs
I"" ru~mc hed ofprimary jet

In Coanda flowthe mixing pressure varies from ambient ( a =0, point A
in Figure 13) at the outside of the jot to

-17 W
- - (26)
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at the wall (point B in Figure 13). Thus,the mixing pressure can only be

optimum at one streamline (•.),and the overall augmentation will be less

than optimum.

A second factor determining augmentation is the efficiency at which the flow

is diffused back to ambient from the mixing pressure Ap, . A typical variation

is sketched in Figure 14.

X's

Diftsion efficiency

Figure 14. Variation of Augmentation Ratio With
Dftsiso Efficiency, Assuming Optimum
Mixing Pressure.

It is obvious that woitwhlle thrust Increses can be obtained only when the

diffser efficlawy Is hi - 30% or greter, say. For relatively thick jets,

the ditasice les at the end of a Coanda curve can be quite large -- % as

low as 0. 5 -- so that high mudmemtation ratios can be obtained only by keeping

the jet thin. The loass du. to skin friction then become important, however.

Another reason for using thin Jets when augmentation is required is the amount

of ambient fluid entrained in the jet. The attainable augmentation ratio naturally

increases with the amount of fluid entrained and, as indicated in Figure 15, this

becomes important only below 4/4 = 0.1. Very high entrainment ratios re-

quire a jet thickness which is only a few percent of the radius of curvature;

and in this case, boundary layer effects start to become important.
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JET THICKNES PARAMETER tlP,

Figure 15.. Variation of Entrainment Ratio With Jet

Thickness for a Right-Angle Coanda Bend.
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Although nothing can be done about Coanda mixing at nonoptimum preamree,
we can avoid the efficiency loss due to diffusion, as indicated in Figure 16.

I *. COANDA FLOW
I ) * SECTION

I / ,

( I DIFFUSION
SECTION

Figure 16. A Coanda Profile Designed for Maximum
Thrust Augmentation.

In the present program vw have teaded to regard the Coanda effect a an in-
teresting test of Ow thetortoal mehods as they were developed, so that the
amount of ooheremtly commoted sldy of this phenomeno was rather slight.
The basi teohaiqipe, however, would seem to satisfy all the requirements
for an ezhiostives aft. We believe that suoh a study would be very fruitful
and might lead the way to Importat fure applcations of this interesting
penoomenon.

WNrAKE FWW TFLOW

The intake flow field depioted In Figure 1(a) Is beooming increasingly impor-
tant in hardware applications, some euimples being the XV-4A, XV-SAo and
various GEM onfiguratio.

Since it is a curvilinear flow problem, Equation (3) again applies; and in a
subsequent chapter of this report, the appropriate end-conditions are defined,
and solutions obtPined for certain simple cases. Characteristically, the air
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accelerates over the forward lip and then diffuses into the duct, so that
separation of the flow can occur, as indicated in Figure 17.

Separation due to sudden
pressure rise.

Figure 17. Leading Edg Separation With Intake Flow.

Even without separation, total pressure losses occur, and once again, these
can be calculated with the diffusion theory developed dring this progrm, al-
though lack of time bas prevented us from actually doing this. Tlus, the thoo-
retical conoepts developed present us with the meas of designin optinum
intake geometries.

The classical approach to each problems is to use the method of singularities to
calculate the invocsd flow field. This bas drawbado. of course, because a real
fluid tends to separate in 1ia$ c' high adveree pressure gradient. Moreover,
the fact that a real flow Is aot at a conitt melW level proeludes such an ap-
proach from ever giving preoli, results unles the oofisuration under oonsid-
eration is one In which constant meol is a viablo assunqti.

In a practical intake flow problem, It Is usual for some boundary to exist up-
stream of the intake opening. It will be shown that even a very thin boundary
layer can have a very marked oefht on the intake flow distribution. More
importantly, the separation or flow distortion which results from high drag
areas upstream of the intake can have a large influence upon the intake flow
distribution and on whether diffusion separation of the flow will occur.
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These effects can be studied, using the techniques developed, but once again,

lack of time has precluded such studies in the present program.

MOMENTUM DRAG

The momentum drag of an intake is usually defined as

Drag - (mass flow) x (free-stream velocity)

Ad*V . (27)

Various investigators have reported anomalies, in that the difference between
the measured profile drag (air off) of a vehicle -- particularly a GEM -- and the
total drag is less than (A U, ); sometimes there is no difference at all.

The present work on intake flow indicates that Equation (27) is not correct,
since the intake is not swallowing undisturbed air in most cases. If there is a
substantial skin surface upstream of the intake, for example, the boundary
layer air has already been slowed down to a velocity less than O/o . If there
is a high-drag element (such as a stalled wing leading edge, or a bluff body
shape, upstream) then all the intake air may have an initial velocity which is
substantially less than ,4 . It Is felt that this probably explains all the
observed anoamlies, altho,.gh it has naturally proved impossible to under-
take a detailed review of them.

T JT 71AP

The 'thrust hypodh•eis" of the jet flap was earlier referred to and illustrated
in FIpgre 2. In aa effort to obtai some firo-hand experience, we built a 20%
thWok llipIal &er u ot the Pay.. two-dimensional tunnel, and also ran a
smtilar model in the smoks tunel.

Typioal msi. tUnmel runs are llustrated in Figures 18 and 19. These are
quite oooveutloal reults,'exoept for the indication of turbulence in the wake
of the wing. It is also very Interesting to note that, below the wing, the free-
stream air eotors the jet, rather than being deflected by it, as would be expected
in invisold flow.

We then studied the forces generated in the two-dimensional tunnel; using the
test setup Indicated In Figure 20. As indicated in Figure 21, operation of the
Jet flap generated more drag, rather than a thrust force !
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* SEALED NOZZLE
4 •j/4. =1.7

-0.3

-3 0.2

o /
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0.1

0
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REFERENCE POSITION ACROSS WAKE - INCHES

Figure 21. Results of Total Head Traverses 3.25 Chords
Behind the Jet Flapped Aerofoil, With the Jet
Flap On and Off.
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The main reason for this is indicated in Figure 22. Because of the relatively
low jet to free-stream velocity ratio, the jet entrainment is insufficient to
avoid flow separation around the trailing edge of the wing. Thus, the jet sheet
actually *.acreases the dopth of the wake.

Given a relatively slow-speed wake, the jet now loses more energy by mixing
with Jt, and also by mixing with free-stream air in the region marked X-)( in
Figure 22.

The net result was that, instead of obtaining

:7o

as Figure 2 would indicate, we measured

40 = - 0- o3

;70

Presumably Z./3,- would have been positive if the Jet had been energetic
enough to prevent flow separation at the trailing edge. Mixing in the region
x-x would still have occurred, however, and In Reference 3 it Is shown
that even this is enough to explain the low values of thrust recovery
( =V% - *.1- 04 ) reported by other workers.

JET IS•UING NORMAL TO A FRZZ-UTRZAM FLOW

The Jet-flap measurem t Indicated that the ftsioal picture was extremely
ccmplicated. In an effort to Isdt some of the variables we therefore do-
signed an experiment in which a Jet issued from the tunnel floor, as illustrated
in Figure 23.

From Equation (25) we should expect the balance of momentum flux and the
pressure forces to give

(28)
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if Aý!. -

and since

(29)

5,. * * .<' ,:: . :.'• •;

the following
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--/410 .56 1.34 2.88
Measured --- 5.0 7.5
Theoretical 0.94 75.0 169.0

The theoretical figures are based on the assumption of a constant radius curve,
but even in the limit case they would be reduced by only two-thirds. Obviously,
the theoretically predicted -/1& is an order of magnitude greater than the
measured value.

A small part of this is attributable to assuming • = 0. From the test data
we can see that * < a , due to viscous entrainment of the cavity air. Most
of it must be due to a reduction in • , however; part of which is attributable
to mixing with the cavity air and part to mixing with the free-stream air.

Although some aspects of this problem have been studied briefly in Reference
3, we have not attempted to formalize the theory completely for this problem
because of lack of time. Nevertheless, sufficient work has been done to indi-
cate that it is probably amenable to the general techniques developed during
this program.
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Chapter Two

GENERAL DIFFUSION THEORY

THE FLOW OF A JET THROUGH A DISCONTINUITY IN STATIC PRESSURE

The flow of a jet through a change in static pressure is not well understood,
perhaps because it rarely occurs in practice; or rather, it was rare until
the advent of the jet flap and the annular jet. A one-dimensional solution
due to Borda and Carnot is known for the case of an abrupt duct enlargement
(the "Borda-Carnot loss" or the "Carnot impact formula") and gives very good
agreement with experimental observations. However, this analysis has not
been extended, and it is the purpose of the following sections to generalize the
theory and to extend it to two-dimensional flow.

I T

4,--am.i

Figure 24. Geometry of Flow Through a Pressure Change.

SOLUTION FOR CONSERVATION OF TOTAL H19AD

In Reference 4, Payne assumed that, in the absence of a mechanism to account
for losses, total head is conserved when a jet undergoes a change in static
pressure. Referring to Figure 24, this amounts to assuming Bernoulli's
ecpation for conservation of total head to apply along any streamline

3(30)
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For the one-dimensional case, the momentum flux is given by

'It = t;.. , 'AA% ).

Substituting Into Equation (30),

Su + . (31)

Since •" = __ this may also be written as

IL r -I4 (32)

In other words, an increase in static pressure reduces the momenuum flux
and vice versa.

THE GENERAL MOMENTUM SOLUTION

Consider the control boundary in AA and BB in Figure 24. The horizontal
pressure forces on this boundary must equal the momentum flux In the system.

A4.

e~,&~ 1)416 s ;-w (33)

The mass flow is given by ,.a.
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"Z C M (35)

and 4 A'g.. (36)

*.1 , (37)

+ for uniform flow. (38)

Thus, as indicated in Figure 25, a reduction in pressure results in in increase
in momentum flux, but the change is a little larger than that calculated by assum-
ing conservation of total hed. Becasase we use the dimension 9, in Equation
(33) the above analysis can only apply for accelerating flow.

We may summarize the results as follows:

"When there is no means of mechanioljly reacting a
force in the direction of interest, momentum (rather
than total head) is conserved in an invisold Jet."

That is j A-10 4i - J 1 *%! constant. (39)

Thusthe energy (or total head) of the flow will diminish If it is slowed down
(diffusion) and increase f it is adelerated. The principle of conservation of
energy is not violated by this, bwe-uoe we have an essentially unbalanced system.

For the constrained flow case of '1pre 26(a), the ,nmaentum Iblance is

Z36+- 2 6+a. -ZJ lu: A e" (40)
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0 DIFFUSING FLOW ACCELERATING FLOW

2.0
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THE "BORDA-CARNOT" LOSS

-1.0 -0.5 0 +0.5 1.0 1.5

STATIC PRESfJRE PARAMETER

Figure 25. Change in Momentum Flux Through a Static
Pressure Change for One-Dimensional Flow.
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or -,

-40S.(41)

(a) Flow constrained b-y solid (b) 'Unconstrained flow tbhroqjia~wills Static 26ressu -eM

Figure 26. Constrained and Unconstrained Flow Through
a static Pressuare Change.

AE indicated in Figure 27, the Ihtra on the left land side of XLpation (41) canhave any value bewn zero O (,I, - S (At, -Af). Itf~t i ero, wehave thecase of no applied mechanical forod and hqAatou (41) is identical with Bquatlon
(39).

Referring to Figure 27, this implies that -& )follows the line (A - B-C)In other words, a contra~ction does not take place until after the pressurechange has occurred, Figure 26(b), while an expaision occurs before a pressure
increase.

The second case is certainly true of a sudden duct expansion. However, It isnot clear that such a situation can exist for a reduction of static pressure.
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1' ' "'4
Il A

Figure 27. The Integral A4

(a) Underfed Jet (b) Balanced Jet

Figure 28. Two Jet Flow Conditions.

We mght imagine the condition of Figure 24 to exist for an annular jet. Indeed,
most theories "sutms

~5 ~ a constant

rather than

~ - constant.

However, a closer examination of the jet flow indicates (Figure 28) the local

jet curvature itself provides a mechanism for providing the force)

which we have seen to be essential to the conservation of total head.
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We shall, therefore, continue to assume that when an annular jet accelerates
to ambient static pressure, total head (and, therefore, power) is conserved.

BORDA-CARNOT DIFFUSION IN TWO-DIMENSIONAL FLOW

--- JoI

It.. _____ I AI'|

, I ., .. .+,: . .. . •'

CONTROL
VOLUME

Figure 29. A Sudden Duct Expansion.

In this section we consider more formally the simple case of a sudden duct
expansion, which was treated by Borda and Caruot for one-dimensional flow.
Following the general aonsiderations introduced In tho previous section, we
assume that the expansion of the flow boundary taims place before the pressure
rise, as indicated In rilgures 29 and 30.

Using the control boundaries shown in Figure 29, the sum of the pressure
forces is

A,('I- At.) (42)

acting positively against the flow direction. (The static pressure at stations
(1) and (2) must be constant across the duct, because the flow is assumed to
be parallel.)
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Figure 30. Variables in a Sudden Diffusion.
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The momenaum flux through the control volume is

A. - p ,dA,. (43)
0

Equating (42) and (43),

• •�dAzL. (44)

For continuity of mass flow,

o(, ( 45)

The mean velocity is defined as

jAn (46)

Aand we will define the momentum flux also in terms of 44,A,

That is, *044

(47)

where • Av

4(48).
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Thus, Equations (44) and (45) now become

A~A A-~a) reAit4X4 - ?~ . (49)

CA14AI r At'" (50)

We wish to determine the loss of energy occasioned by a sudden diffusion.
Power is defined by

cc A , (51)
'3

II
+ (52)

where k' Aft

A.- A (53)

Thius,we are interested in the ratio

r. AliaA&- *fA :~

.L "SA .~L *A,4 '4 (54)

From (49) and (50*,

Al 4to + ).AeA . - eA' )QX(A /As)4 XI
A64, (A/A)z) . (55)

Substituting in (54).
paA)- /A A' ,=

___-_ _, _ _ _, _ _ x, ,__ _,_ _ -__ , (56)
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A convenient nondlmensionalization is

A (57)

Using this, Equation (56) becomes

'Y a* +. v 4.- 2 A A y>-A/i [-(A~4' 1 ( 8

It is obviously convenient to assume similar velocity profiles at stations (1)
and (2), so that4 = -h and N, = N j . We should note that this is only
an assumption of convenience, however, and that a rapid diffusion can be ex-
pected to alter the profile. We would intuitively expect that a un *rm velocity
at station (1) would become parabolic at station (2), for example. However,
the similarity assumption can be expected to give at least a rough indication
of the effects of profile.

Equation (58) becomes

6T a 'P&
- (,_, ,)[(i + ,4,, _ , ] (59)

6• .,..,

It is often more convenient to write the deaonimator In the form

from Equation (52). Thus,

For uniform flow,-f = =1.0, and
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or A ,-. (I- (61) I

In other words, as JS --0 0 , all the kinetic energy in the flow is lost.

Equation (61) is plotted in Figure 31.

Also in uniform flow

so that

Thus,the total head loss

- . , AV1)L (62)

But

• ". ---. - I " ('-A" A-)'('- gP ). (63)
A P, 

(63)
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Figure 31. Power Lost in a kdden Diffusion, for
a Uniform Velocity Profile.
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VALUES OF THE SHAPE FACTORS X AND

• IQ INCREASING

Figure 32. A Family of Radial Velocity Ditributions
in a Circular Duct.

We will consider the case of a circular duct with a velocity distribution of the
type

.,4 (64)

Obviouslythis family tends to a uniform distribution as i.-e and gives a
triangular distribution where f. = 1.0.

Now the area A - w'• A., "

Af4AA

48



,0 )

(65)

The momentum integral is

-~~A A0jj - ]1f ,A. 4 JdAt

"= o A - 4 4 ._..- 1 (66)

Thus,from Equation (48)

- (67)

Note thatasw.1.--PO , -- 1.0. Forw'.. =1.0, > =1.5.

The power integral isA^ 4' a -M'A
Cf-f jA fs#-7i +~-~J

3 •- g. -

a -- • (68)

Thus, from Equation (53)

4*9. * (69)
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As*- -*oo ,• %P- 1.0. Forw- = 1,0• = 3.7.

Equations (67) and (69) are plotted in Figure 33, and the resultant power loss
parameter, from Equation (60), in Figure 34.

THE LIMITING VELOCITY CHANGE

From Equations (49) and (50),

or

A, A,,' I J"L > 4 :

f A \ A )(711

For similar profils )"s. "

an equation which Is plotted In Figuzre 35.

If we write Equation (71) as
4, x

-E (7 4:
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UNIFORM VELOCITY TRIANGULAR VELOCITY
DISTRIBUTION DISTRIBUTION

0 
,0
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DISTRIBUTION SHAPE FACTOR A

Figure 33. Variation of the Shape Integrals )X and k
With the Shape Exponent e# for the Power
Law Family of Velocity Distributions.
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,s/AS =2.5

1.4 SUNIFORM VELOCITY A 1

DISTRIBUTION -
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DISTRIBUTION SHAPE FACTOR t//*

Figure 34. Power Lost in a Sudden Diffusion, as a
Function of the Velocity Distribution Profile.
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Figure 35. Variation ,f Velocity Ratio 4//, , With
the Pressure Rise Parameter Cp , for
Similar Profiles.
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and differentiate with respect to , then equating to zero gives

Substituting in (74),.

(76)

Thus we see from (75) and (76) that, so long as the initial and final velocity

profiles are similar (At = A ), Cp,. = 4 at a mean velocity ratio

Thus increasing the flow distortion increases the pressure rise coefficient,
although at the expense of increasing the associated energy loss.

Since X increases in value with increasing deviation from uniform flow,
however, we can expect At > X,, when the profiles are not similar. Thus,
distortion of the flow profile dur diffusion reduces the maximum obtainable
pressure rise.

The corresponding 'otal pressure loss for uniform flow is plotted against Cp
In Figure 36.

The critical velocity ratio of tM, is extremely interesting, because this
happens to be appropriately the limit for all diffusion processes. Ackeret's
criterion of

Cp > 0'7 t- o. v (77)

for stall ha been confirmed experimentally by Schlichting5 . If 7 is a diffusion
efficiency, we have from Bernoulli, A, As

4A A
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Figure 36. Variation of Total Pressure Loss With Static
Pressure Rise, for the Case of Uniform
Velocity Distribution.
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S(78)

For uniform flow, and 1. 0 (no diffusion lossý a value of " y =, --

gives Cp = 0. 75, a value which is in excellent agreement with Ackeret's
criterion.

Lieblein6 has shown that flow separation occurs on compressor blades when
the ratio ot the peak velocity to the trailing edge velocity exceeds 2. 0.

Other examples of this limitation on diffusion have been cited by Senoo 7 who
points out that all conical diffuser data combine to show a peak pressure
recovery coefficient in the range 0. 7 - 0. 85, corresponding to velocity ratios
of about 0. 55 to 0.4. He also shows that, using numerical methods of determin-
ing the stability of a turbulent boundary layer, a uniform diffusion causes
separation at a velocity ratio of around 0.6.

Finally, Goldschmied8 has shown that stall can be correlated by the equation

Co so g0o z (79)

whe,'e 2; is the skin friction stress at the point of maximum velocity. Since
Scannot exceed. 0048, Co, cannot exceed 0. 86 under the most favorable

conditions (& = 5000) and will be loss for the higher Reynolds numbers en-
countered in most practical problems.

Thus.all the experimental evidence seems to point toward the essential correct-
ness of Eqiatlons (75) and (76), even though we cannot at present see clearly
why this should be so. There is obviously room for a great deal more research
In this regard.

So far as the prse"t program Is concerned, we are principally interested in
Equation (63), which can obviously be expressed as

A )P, (80)
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AP (81

Or, sinle AA-C -

When dealing with a curvilinear flow field which has a velocity gradient across
the direction of flow, we shall assume that Equation (81) applies along individual
streamlines. This implies that, even in the middle of a let, diffusion takes
place at constant static pressure (Figure 29 on an elemental scale) and this
assumption is impossible to justify, at the moment, other than by the results
of analysis based upon it.

57



Chapter Three
THEE QUATION FOR CURVnIT OV IMNINAFO

THE EQUATION OF MOTION

(a) Curved flow e et

(C) Dhimenai~g ofazel m t
F l g u 3 7. T h e x ls mnl* t i G eo %o mtzy O f th e C u rv e dFlow Field.
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Taking only first-order differentials, this simplifies to

Ft d (83)

The mass per unit length of the element is

e-- C" (84)

so that the centrifugal force is

-1-- - (85)
V-

Since the centrifugal force must be balanced by the pressure force, we can
equate (83) and (85)

S= e' . (86)

The local velocity is related to the total head at radius " by Bernoulli's
equation %

44

Substituting for i. in Equation (86),

d (87)

where can be any funotli of -r

In order to solve this equation we need to specify one boundary condition;
usually the static pressure at the Vp, or R boundary. For exsznple,
specifying ambient static pressure at the O botindary would give the an-
nular jet solution; specifying ambient pressure at the R boundary would
correspond to Coanda flow around a curved surface.
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It is convenient to use "gauge" pressures (that Is, pressures measured with
respect to some datum pressure, usually the ambient value), the definitions
being

AP P(88)

It follows that Oi •. Thus Equation (87) becomes

Eai (89)

A LINEAR TRANSFORMATION TO JET ORDINATES

Since the total pressure is specified with respect to the jet ordinate ( ! in
Figure 37) it is convenient to transform Equation (89) to this variable. Such
a transformation also enables us to introduce the concept of a jet which has a
lMnear variation of curvature across its width, by writing

-P * -t -+ 2 (90)

where f] 1.0 for free vortex flow.
7 = 0 for the constant radius assumption

used to derive "exponential theory".

In general, 04.7 4 1.0 for an annular Jet, for example.

Note that V - 1.0 In Zq•Wtion (89)% despite the transformation. It now
becomes74

& 4 t-~ (1

The general solution is the familiar formula for a first order linear equation:

60



4- 1.
- - r •/( $(92)
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tilt, Cons•tant bei~ng zero if •4,=0 when =0, of course. The total

t:Ltic :pressure rise across the jet is

,NINEAR TRANSFORMATIONS

:'.l•iough not gerriiane ., the problems of the present program, it is of
nttcrist to note that nonlinear transformations of Ecuation (89) have value

ccrtain cases, one example being depicted in Figure 38.
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Figure 38. A Flow Which Has Infinite Radius of Curvature
at the Center Line.

F-ir this case, for example, we might reasonably use the transformation

A-t. (96)

Thus Equation (89) becomes

A (A-" (97)
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Chapter Four

INVISCID FLOW ANNULAR JET THEORY FOR CONSTANT TOTAL HEAD

In this clhpter we shall apply the curvilinear jet theory first derived to the
annular jet problem. Of all the common curved jet flows this has been studied
most extensively, both theoretically and experimentally, and is therefore a
very logical starting point.

As noted in the introduction, most theoretical analyses to date have been based
on momenti"m. equations. The well-known exception is Strand's14 -potential
flow solutiun, which is known to give erroneous results at low ground clearance
heights.

When an annular jet is close to ground plane, it approaches, in the lirmit, the
case of a plenum chamber. The plenum chamber problem can be regarded as
equivalent to a jet issuing from a slot in the wall of a large vessel, the ground
plane replacing the axis of symmetry.

An extremely complete fnily of solutions for finite plenum chambers has
been obtained by Gabbay , as part of a more general investigation, and the
appropriate results are summarized in Figure 39. Since these results pass
through the already known points for 0 - + 900, 00 and - 900, and since
these isolated cases are known to agree well with experiment, it is reason-
able to feel a high level of confidence in all Gabbay's results.

In passing, it is of interest tc note that the existence of these results now
enables us to work out definitive solutions to the problem of the optimum
wall angle for a plenum chamber GUM.

GENERAL MOMENTUM BALANC• COKIDERATUONB

A Thin Jet Solution (Pinnes' Oeometrvd

When L/R 1.0, we may postulate the geometry of Figure 40 for an annular
jet. The assumption of constant radius of curvature along any streamline
follows, of course, from the assumption of constant cushion and ambient
static pressure.

We refer all pressures to ambient by the ( A ) notation. Considering the
curved part of the jet (AABB), since the external pressure forces must be
equal to the change in momentum, we resolve horizontally and vertically.
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Figure 39. Potential Flow Solutions by Gabbay Applied
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For the vertical resolution,

- Ce (98)

For the horizontal resolution,

4-d - 3S 4 ..1ea- A sLZ1 Q

or, substituting from Equation (98) for j%

Considering now the momentum balance upon the accelerating flow section

(BBCC), the horizontal resolution gives

ts h(10r)
-T "

It should be noe that no asssumptonn have had to be made for the form of the

static pressure distribution across the jet or for the total pressure variation.

Thus Equation (101) should hold for any theory.

The present analysis does not completely define the effective jet periphery 4,
of course, except in the two-dimensiona flow case. However, a three-

dimensional momentum balance is easy to do for a given three-

dimensional planform, using the concepts introduced above.
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A Thick Jet Solution

As the jet nozzle approaches closer to the ground, we cannot expect the region
(BBCC) in Figure 40 to be physically separated from the curved jet flow. Rather,
as Strand has shown in his legant potential flow solution, the acceleration to
ambient conditions will take place during the curved flow regime, and the jet
shape will resemble Figure 41.

Equation (98) is obviously still applicable to this case, so an expression de-
fining the nozzle pressure integral is available. For the horizontal resolution
we have

46 = " (102)

e.

9- bstituting Equation (98) for Jd .we find that Equation (101) still applies.

The Variation of Curvature Across a Thick Jet

The outer (cushion boundary) radius is always defined by

L. R "4" .0,;, ) -- (103)

on the assumption that the radius along any streamline is constan.

For the geometry of Figure 40

0o - (104)

and the flow pattern is oompoetely defned. Note however, that In previous
work the (t**4-0) term in l•qmttnh (103) has been omitted.

For the thick-jet can of FIgure 41, we must mai. an additional asamption;
to whit, that the ambient boundary streamline is tangential to the nozzle wall.
Then from Figure 41

I? a . +a ) r, *,# t:.
ort
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if +1. 7 • , as discussed in the previous chapter,

and 1z ( - -t (106)

But, from Equation (105),

The ratio is a discharge coefficient, of course. As

0~ 0 6

The Height Parameter '/V

We shall find that the fundamental parameter which defines the characteristics
of an amular Jet is

,-is_ O=bo ,44 dk MathI4
Y ams of ouayreI of tho iner Str~eamine

From Equation (103) this is gives by

% 4 (108)

Previously, most writers bve used th umeter

! �.(I 4 •, s e) (109)
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which is evidently erroneous, for 0>0, from the geometry of Figures
40 and 41.

Three-Dimensional Effects

The principal geometric effect of three-dimensional flow is to modify the jet
curvature and hence the cushion pressure. From Figure 41 it is obvious that
the radius R will not be influenced, whatever the planform. When the jet is
curved in the third dimension, however, as in a circular planform GEM, for
example, its effective periphery increases as it moves away from the vehicle,
so that its thickness ( -t, ) on the ground plane is accordingly reduced, leading
to an increase in the ambient side radius "r. .

It irs important to realize that this effect applies only to annular jets which do
not have straight nozzles in planform. The jets of a rectangular GEM would
behave (on this postulation) exactly as if they were two-dimensional, the
"three-dimensional effects" being confined to their junctions at the corners.
There is some experimental evidence 1 9 to indicate that, in such a case, the
interaction of two peripheral jets at a corner gives an increase in cushion
pressure rather than a loss.

As the most common example of a curved jet, the circular planform ilus-

trated in Figure A2 is considered here.

Figure 42. Geometry of a Circular GEM.

The effective ciroumferemo C' of the Jet is given by evaluating the area of the
frustum of the right ciroular oone made by the Jet exit.
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C-i:L

Ca ii(110)
The jet radius on the cushion side is unaffected by the planform. The radius
defined by the V; arc becoming parallel to the ground is

Thus the effective pe•iphery is

The analysis then proceeds as before. However, in now defined an

. .• x ,-I,

or * I * (114)

The limit case of a very thia Jt Is provided, of ourms, by asmaming

-I.l 1.0.

SOME 2ENUAL UZIMTK woM TEE FLOW PARAMETEM OF AN ANNULAR
JET

in the most general oase, the toW bead wriatiom across a jet is a function only
of the distance ( ) across t jet.

(1
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The local static pressure A+ is also a function of It is therefore
possible to define completely jeneral relationships for the various performanoe
parameters of interest, in terms of these two variables.

The Local Jet Velocity '4"

In the nozzle cwt plane, the local velocity is

(116)

The Jet Mass Flow 1EV.j

e C

The Nozzle Momentum Flux 53

2. - - (118)
ECA

Total Noasl Force

sI . . , (119)

It
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Jet Power

Power is defined at the nozzle

,.) - .0 IAP d,\

-ip OR-A P ( (120)

Total Lift

Total lift jet lift + cushion lift

- r FC.,&* A* (121)

in inviscid flow.

SOLUTION OF THE CURVED JEt EQUATION FOR CONSTANT TOTAL
PRESSURE

We come now to the colution of Eqation (94) fdr the case

, .constant=,,(Bay).

This !ives

+ 75) 0 .? *7 ) ), (122)

the constant of Integration vanishing beomau of tim boundary condtion A f 0
at • -0. Integrating(122),we obtain

7(123)

73



and, of course, the cushion preewre to

LAcWI!Wq Velocity

Jet Kass Flw j

C (St6pi) 6%I

The Notlk MamommFlm r

Tota Jet Force F,.,
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2CA 09•A P

S , the preceding section;

J. let Curvature Parameter

Li,,h jet has accelerated to ambient, its thickness is

N11W", for continuity

t~i"

P -L -(129)

There l rc two possible assumptions for calculating . If total head is
S)Ilse!rved, then

* ~b, '~- ~(130)

rumi, Equ~ation (126).

I L'al I momentum is conserved, then is not necessarily constant across
* Th, conservation of total momentum assumption only states that

J. C f, • • J,,. (131)

,Th.precsecnt analysis we will assume 1 ,= a constant, while noting
ilmintations of this assumption. ThusEquation (131) becomes
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-,5 . ) (132)

Substituting Equations (126) and (l1.8)

A x I -t? (133)* _kr, ,1" tŽ

2-1--_

The jet thickness ratio AiA is also defined by the jet gometry. If we assume
that the inner and outer boundaries are circular arcs, then from Figure 41

(134)

By cross-plotting Equation (134) with Equations (130) or (133),we can obtain
solutions for 7 in terms of 'AW/W . This has been done in Figure 43, assum-
ing conservation of total hued. The resulting values of V? and ir U.Ce
plotted in FigUre. 44 and 45. The agreement with Strand's potential flow
solution is notable In F/Iure 45.

MomeNtum Balance

From Equation (136), oomwning oonservation of total head

'. -; -i t -IV .
- • * L'- •'P•" (135)

From EquatIon (101)

(136)
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Figure 43. Cross-Plot of Equations (130) and (134) To
Determine Values for the Jet Curvature
Parameter ¶ . (Solution for Conservation
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Comparing this with Equation (117) we have

(Momentum Balance)
(Curved Jet Theory)

S( (13b

-Equation (138) is plotted in Figure 46. Although the momentum balance breaks
down as -P O, the new formulation is obviously much more satisfactory
than previous theories. It should also be noted that the divergence from 0 = 1. (
as R --s 0 may not indicate a departure from balance, but only a departure
from the assumption of circular curvature.

Other Results

Knowing the variation of w with , we can calculate the values of the
other quantities derived earlier in this chapter.

In Figure 47 the cushion pressure parameter A1114'p. behaves just as we would
eect., iallhng between the free-vortex and expofiential theory results.

The discharge coefficient plotted in Figure 48 Is particularly interesting, be-
cause, in onatrast to previous results, it obviously agrees well with the known
potential flow solutions for a plemam chamber. For the case G = 0 on the
curve obviously fairs well into the point CS = 0.61 which is established for a
jet issuaing fromt an orifioe in a plane wall, while the O = 900 curve would ob-
viously fair into the Borda mouthpiece solution of C4 =0. 5.

It will be recalled that a major criticism of itrand's potential flow solution
was the limit SC -o 0.5 as A...* 0 in contrast to the known result Ci, = 0.61.

A more detailed comparison of the discharge coefficient predicted by the
various theories ih liven in Figures 49 - 51, which also include an analogous
solution by (;bayiI8
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Gabbay's problem involves a straight wall as the inner (cushion side) boundary
instead of a constant static pressure streamline. Since the static pressure
along his boundary is not necessarily constant. his result approximatec3 to the
annular jet case only in the limit ,/t - 0. But at large values of the jet angle
0 rhe approximation wi]l presumably be valid at finite small values of

". ste that, in gene: ;i, the pr-sent theory agrees with Strand's for AA > 1
and tcnds tot=ds Gubbay's for 0. 5 "< . . At values of Ao4 4 0. 5, the
solution breaks do',n because the implied geometrical a.r;sumptions are no
longer tenable; but the e: 1 rapolktior. from higher values points quite convinc-
iri"v towards Gabbay's limits for A4,• 0.

Srractical hI - rw:ge of izrtere t is 0. 5 - V<2 or 3. 1 he elegant
.k.d sophistica0cd,4i-v ' 'al f-ow frei-nMc,:ts of Gahbal"and Strand apply respec-
tix'e, t,)eiow avrA above itA.s rangn. 7"ithin the range, this relatively simple.i,,or•. If this& repo-4 is af•-Va•-f-.W .-- ca

,.\f i w is a r.•y n,.. ap'licablc than either.

J .ould Labien to add ti.at Gahbay va.'? not considering the annular jet prob-
,i in 1-Is analysi, and wie mr kitemrJsd his svlutton to apply to it.

fit nozzle force parameter plotted in Figure 02 is noteworthy because the
pr. . c lift termn i:; gcn-erally Ig-;aored in the c.alc-lation of total lift, yet is
.:cet to make an import.rnt -ontribution tt low grouad clearance heights.

Sor, of the calculated two-dimer-tontal solutions are gfren :umerocally in

The same procedures apply to the cak-ulat.onof Jet chrafteristics in the
thrce-dinierslonal ease, using Eqqation '114).

A, an exiaimwe, -&e calculate the valuex of Y7 and * . fnr a circula plan-
t,,-m GEM, for the ase =0 0. 1165. The resulto are plotted In
Figures T,3 and 54, and we fee that, although therv is a significant varltion
i,* 7 ( and therefore ke/k), the cushion pressure rmmafbs a'1monrt completely
unadfecled by the change of planform.

£11," C(`SJlON PRESSURE PARAMETE,

e.'c shall see later Luat Ime conveuitional cushion pres&cre pa-amit(or
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•,. = cushion pressure

A Pi mean jet total pressure

is not a very meaningful index of annular jet performance, nor is it a good
parameter for correlating test data.

The fundamental performance parameter in hover iE the ratio of the total lift
developed to the power lost in the jet, but this introduces extraneous variables
related to the planform and geometry of the vehicle. A closely related index
is the ratio of the cushion pressure to the jet power, however, and this seems
to be the most useful parameter for general use.

From Equation (120) the general expression for jet power is seen to be

-!
- t - ý )& .) (139

Since VlL P. jO L

we may expect that

1K
constant.

We can formalize this result by oonsldering an Ideal (very deep) plenum chiamber
at an edge clearance height of A& . The mass flow out is

W; - e5- (140,

r (141

The obvious non-dimnsim alizaton is
" "C- (142
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A6can thus be calculated for any GEM confiuraton. provided that
andAIL are known. Alhuh is the reciprocal of thi is an
effective discharge coefficient. In the general case, it will differ from the
actual discharge coefficient, which is defined as

CI, * (143)

Naturally, although we have derived this relationship from plenum chamber
theory, it can be applied to an annular jet. Indeed, at very low edge clearance
heights ( -4.4 O),there is no difference between the two configurations. As
lift increases, the annular jet may be regarded as a special case of the plemm,
where dLcting is employed to reduce the discharge coefficient.

The General Expression for

From Equations (139) and (142),

Substituting for and Wo M s (H) OWd ),

A+ - .2 (145

An optimum total bead dldOu M b WIamwl bern which maule- hi expresson.

The Cousta Nt Roda Radi

If i a 0omt"tN", it vani/shes &om the suo, sad

C I Or(*4 14
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that In, i 
(146)

- (147)-.[' -••÷
C,

The Solution for Free-Vortex Flow ( 10 = .0

For the case b7 = 1.0,

A•5 _ (-.,'•). P, CL) (148)

Substituting in Equation (144),this reduces to

IL ' I)(149)

which can be written as

if 
I t (1 5 0 )

The loautm for 3•Mg 4s % mo•r k Flow ( - 0)

In th oam*itam be shmw tUat

4 
. (151'
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GENERAL SOLUTIONS FOR FREE-VORTEX FLOW WITH CONSTANT TOTAL
PRESSURE

For the special case of free-vortex flow, the jet curvature parameter is
S= 1. 0. Thusfrom Equation (94),

f(152)
-z.

"- •-"-" 5 ("• " )"(153)

Calculation of Mass Flow ni

From Equation (117),

-__-- .. ,-•÷)-. •¢

,. (154)

* t~~3 -~ *e~ji+ ; (155)

writing

and I_ (1AO)

Calculation of the Lool VlootY

.An (157)

S- 4. ,(15.)
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Note thatasNA-w 1. 0, • 0) .

The Nozzle Mouientum Flux Jj

Since .- -- . .2 P

2Ctq 1145S

The Total Jet Force F

From Equation (119),

Zrr
I+

(16o)

The Jet Force

From Zqiom (117) and (12@Vt is obvious ta the Jet power parameter is
the same a the maw flow prmeter.

The momentum flux to ambient, mumming conservation of total head, is
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Aj.(Momen'im -hiory; 0-*A IT4(12
A + ,, ( C u r v e d J -at T i t ,"o r y ) -t -(

?.ANERAL SOLUTIONS FOR CONrSTANT RADWS FLOW (EXPONENTIAL
THEORY) WITH CONSTANT TOTAL PRESSURE

The exponential theory is concerned with the solution to Equation (94) when
S= 0. W e then have, from Equation (91),

._ -~ [z•f l • •
(163)

Wheno o; .'.k 0

WMen a Constant , atim (164) beomes

, '6 -- e(165)

and. of oourse, the cushion pressu-e is

AN ~ - 4

(197
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The Local Jet Velocity V 1  f

Since -j

C. (167)

The Jet Mass Flow li

Since C

C)'7 Ar

(168)

The Naszl. Momntmb Flux

-- q

/ 4L

- I-. •(169)

Tho TOW Jet oe

"" •.•4p. 2&-• ,.'
,, . 4e aVI . (170)
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The Jet Power

From Equation (120),

This expression is the same as for the mass flow, of course, so that

' (171)

Momentum Balance

The momentum flux to ambient, assuming conservation of total head, is

. -. -I?

From Equation (101),

.- )- (172)

Comparing this with EVUltio (16)0

(Curved Jet Theory) (17)
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SOME EXPERIMENTAL REJLTS AT CONSTANT TOTAL PRESMYRE

The Anmtlar Jet Test Rix

The annular Jet test rig shown in Figure 55 is based on a concept by Dr. Harvey
Chaplin of the David Taylor Model Basin. The novelty lies chiefly in the use of
an air supply at room ambient conditions %spirated through the test section to
artificially low "ambient" conditions created by a centrifugal blower.

This arrangement has the ad'antage that, since the supply air is initially stii,
the distribution of total pressure at the no7 " very uniform and losses and
distortions arising from boundary layer effects are minimized. The use of a
constant static pressure streamline intake assists in the creation of these de-
sirable flow characteristics.

The appearance of the rig, and of the nozzle geometry used for the present
series of measurements, is shown in the photograph, Figure 55. The internal
dimensions and location of the measurement stations are shown in Figure 56.
The rig is practically two-dimensional, being contained between the sideboards
11.5 inches apart. All the measurements were made in the central plane and
quantities such as mass flow, volume flow, and power are referred to a unit wiclh
( C"' = I foot). Thus, flow volume appears as cubic feet per second per foot
and power as foot pounds per second per foot.

The Expzeriment

The principal plqperinntal subject is, of course, the behavior of the air at
the nozzle exit. lise air ooditions prior to entering the nozzle were known
absolutely, being the amblent ruom conditions. The principal measurements
were at the cutlet, where total and static pressures and the angle of flow were
obtained. A flthor series of meswurementd were made a little lower down-
stream, traversing the jet ad deep into the cushion to examine the behavior
of the cushion air mass.

Total and static pressures in the Jet were sensed with a probe which detected
also the local drection of the flow. The sensing head of thls type of probe is
wedge shaped, with the total pressure tap in the thin leading edge and a static
tap in each slant face. The observed static pressures equalize at the true
static when the wedge is pointing upstream, subject to a correction for error
in manufacture and for pitch angle of the flow. The probe was inserted through
the side of the rigand the traverse was obtained by swinging the probe about
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the point of penetration of the side wall. Thus, we obtained the angle of the
flow in the central plane, as well as the pressures, and were able to correct
for the pitch component due to the probe angle relative to the central plane by
using the calibration. (Actually, this correction was very small at all positions.)
Pressures were measured on inclined manometers. The readings were always
consistent and repeatable and are believed to be free from random error within
± 1 percent of the maxima, including transcription and computation errors. Sys-
tematic errors, if any, are unknown and are inherent in the method.

The pressure and velocity at the nozzle throat and outlet are shown in Figures
57 and 58. The experimental data are given in Table 2. These have been re-
duoed from manometer readings to pressures in inches of water and velocity in
feet per second. No smoothing has been applied, either by alteration or by
omission. Values for the flow volume and flow power were derived by numeri-
cal integration of these data.

Flow at the Throat (Figure 57)

The total rressure at thi throat was virtually zero (relative to room ambient)
because of the negligibly jmaU loss incurred by the flow in the entry. The
static pressure across the throat was nearly uniform with a rml-ght linear in-
crease outward fron-m the cushion side. The mean velocity was .' 3 feet per
second, and the volume flow was 9. 00 cubic feet per second per foot. This
value is probably slightly low because of the inability of the probe to penetrate
the very thin boundary layers and the consequent omission of some small part
of the flow from the integration. Similarly, the flow power, at 137 ioot-pounds
per foot, may also be low.

Flow at the Nozzle

At the nozzle outlet (Figure 58) the flow pattern in greatly changed. There is
a velocity gradient running from a sharp peak value at the nozzle lip down to
zero at a point 2.25 inches nearer the cushion. The flow angle is, In the main,
normal to the traverse axis, indicating that the air has already turned through
the nozzle angle (300) and more toward the lip. Numerical integration of this
velocity across the traverse gives a flow volume of 9.06 cubic feet per second
per foot in the very fair agreement with the throat value.

The static pressure beyond the lip drops sharply to a depression of 2.94 inches
of water. This Is artificial "ambient" created by the inlet to the blower. The
pressure scale in the figure is referred to this datum, giving a cushion pressure
of +2.63 inches of water and a supply pressure of +2.94 inches of water. The total
pressure loss across the jet is greatest at the cushion side and diminishes to
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Mea velocity - 56.8 ft/sec.
Flow volume - 9. 00 ft2 /sec.
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Figure 57. Velocity and Pressure Distribution in
the Throat of the Annular Jet.
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TABLE 2

EXPERIMENTAL DATA - ANNULAR JET TEST RIG

Location Static Total Flow Velocity
Inches Pressure Pressure Angle Feet Per
Inward Inches Inches Degrees Second
From Lip Water Water

THROAT

0.15 2.19 2.94 - 57.6
0.25 2.17 2.94 - 58.5
0.35 2.18 2.94 - 58.0
0.45 2.18 2.94 - 58.0
0.55 2.20 2.94 - 57.3
0.65
0.75 2.20 2.94 - 57.3
0.85
0.95 2.23 2.94 - 56.2
1.05
1.15 2.25 2.94 - 55.4
1.25
1.35 2.26 2.94 - 55.0
1.45
1.55 2.28 2.94 - 54.2
1.65 2.28 2.94 - 54.2
1.75 2.29 2.94 - 53.8
1.85 2.31 2.94 - 53.0
1.95 2.32 2.94 - 52.5

NOZZLE

0.14 0.000 0.070 - 16.5
0.08 0.000 0.070 - 16.5
0.02 0.040 0.070 - 9.5
0.04 0.000 2.768 +10 111.0
0.10 0.590 2.770 - 99.0
0.16 1.220 2.850 +3 85.0
0.29 1.640 2.886 +1.5 75.0
0.43 1.880 2.884 +1.5 67.0
0.54 2.023 2.883 +6 62.0
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0.66 2.150 2.877 +6 57.0
0.79 2.223 2.864 +6 53.5
0.91 2.310 2.855 +1.5 50.0
1.04 2.361 2.846 +1.5 46.5
1.16 2.t25 2.824 -1 42.0
1.29 2.459 2.824 -1 40.5
.43 2.490 2.792 -1 37.0

1.54 2.535 2.757 -1 31.5
1.66 2.544 2.747 -6 30.0
1.79 2.570 2.716 -11 25.5
1.91 2.580 2.694 -18 22.5
2.04 2.596 2.663 -19 17.0
2.16 2.598 2.636 -26 13.0
2.29 2.609 2.609 - 0.0
2.43 2.615 2.609 -

2.54 2.631 2.631 0.0

NOZZLE EXIT AND CUSHION - LOW CUSHION BOARD

-0.41 0.00 0.10 90 21
-0.29 0.00 0.10 63 21
-0.16 0.09 2.21 48 97
-0.10 0.35 2.62 37 100.5
-0.04 0.70 2.62 30 92.5
+0.08 1.165 2.82 25 86

0.21 1.48 2.84 23 77.7
0.33 2.745 2.85 20 70
0.46 1.925 2.82 12 63
0.58 2.080 2.829 1 56
0.71 2.178 2.827 12.5 54
0.83 2.275 2.816 12.5 49
0.96 2.332 2.798 12.5 46
1.08 2.399 2.776 11 41
1.21 2.426 2.758 8 39
1.33 2.460 2.743 6.5 36
1.46 2.494 2.722 2.5 32
1.58 2.515 2.697 -2.5 28
1.71 2.529 2.695 -3 27
1.83 2.542 2.650 -5 22
1.96 2.550 2.639 -7.5 20
2.08 2.559 2.639 -10 19
2.21 2.569 2.612 -20 13.8
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2.33 2.573 2.590 -22 9.2
2.46 2.572 2.583 -2. 9.0
2.58 2.569 2.569 - 0
2.71 2.569 2.569 - 0
2.83
2.9f 2.569 2.569 - 0
3.08
3.21 2.569 2.569 - 0

3.33 2.567 2.574 +75 5.6
3.46 2.567 2.574 +80 5.6
3.58
3.71 2.574 2.574 - 0
3.83
3.96 2.577 2.577 - 0
4.08
4.21 2. 571 2.573 +90 3.0

NOZZLE EXIT AND CUSHION - HIgH CUSHION BOAR')

-0.41 0.00 0.30 90 36
-0.29 0.00 0.28 60 35
-0.16 0.17 1.25 51 63
-0.10 0.30 2.833 40 106
-0.04 0.63 2.825 29 99
+0.08 1.20 2.833 26 85
0.21 1.545 3.060 24 82
0.33 1.870 3.026 19 77.1
0.46 2.075 3.0(C8 19 64
0.58 2.207 3.008 17 59.2
0.71 2.320 2.999 17 54.6
0.83 2.408 2.968 16.5 49.6
0.96 2.495 2.920 15 45.7
1.08 2.538 2.928 15 41.4
1.21 2.604 2.929 10 37.b
1.33 2.604 2.929 10 37.8
1.46 2.675 2.860 8 28.5
1.58 2.675 2.860 8 28.5
1.71 2.719 2.806 4 19.5
1.83 2.732 2.825 20.2
1. 6 2.745 2.816 - 17.6
2.08 2.749 2.780 - 11.6

2.21 2.757 2.771 - 7.8
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2.46 2.746 2.751 4.?l
2.58 2.757 2.7V- 0.0
2.71 2.762 2.762 10 0.10
2.83
2.96 2.758 2.7"1 12z 3.6
3.08
3. 2. 2.758 2.776 87 8 9
3.33
3.46 2.789 2.789 47 10.0
3,58
3.71 2.789 2.789 29 5.1
3.83
3.96 2.789 2.789 24 5.1
4.08
4.21 2.789 2.789 24 5.1
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very small values toward the outer edge.

The power loss between the throat .. ad the nozzle is simply the integral of
P.%rd6 across the jet at the nozzle. This was computed as 5.49 foot-pounds
per foot, equal to 4.01 percent of the throat power. The total pressure loss
is plotted in Figure 59. The power distribution in the jet, like the velocity of
the flow, is weighted heavily away from the cushion. It ib given by the product
of velocity and total pressure referred to the artificial ambient; that is to say,
by the product of WO and -%r as they appear in Figure 58. This is also plotted
in Figure 59.

The static pressure variation across the jet at the nozzle outlet, as given in
Figure 58, is replotted in Figure 60 as the ratio f.ior comparison with
theory. In this display the unitized jet width is taken as 2-1/8 inches, this
being the greatest width at which a finite velocity was observed on the cushion
side.

From the comparison of Figure 60, it is evident that the present theory gives
a very fair approximation to the experimental observation. The theoey appears
to predict (1) a higher pressure at the cushion side of the jet than was obtained
experimentally and (2) a lower pressure, implying a higher velocity, on the lip
side of the jet. This is entirely plausible as the result of -iscous and diffusion
losses in the real case, not taken into account in the theories. Also, since the
measurements are not across a truly normal plane, some distortion of the axis
must be present.

Flow Adjacent to the Annular Jet

In the attempt to determine the flow patterns beyond the boundaries of the jet
proper, we made an extended traverse reaching from outside the jet through
the jet and beyond for a distance of one Jet thickmess into the cushion. The
experiment was exploratory in concept. We wanted to get some measurements
in proximity to the jet bmdMary in the high-speed region around the nozzle lip,
to see if the seoondary flow inside the cushion could be detected, and, as a
practical objective, to see if the variation in height of the cushion cavity would
influence the performance. Accordingly, the measurements were made, firstly,
with the cushion flush with the end of the nozzle, as in all the preceding experi-
ments, and secondly, with the cushion board high In relation to the nozzle as
featured in the Illustration, Figure 55.

To clear the nozzle and low cushion board, the traverse axis was slightly
lower than in the nozzle measurements of Figure 58. The answers to the
questions are evident in the plots of the measurements in Figures 61 and 62.
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DYNAMIC HEAD AT THROAT 1-
2000 0.5

1500 0

' 1000
rz4
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Power at throat %C44=44& - 13? ft-lb/sec ft.
Power at nozzl. - - 132.4 ft-lb/sec ft.
Power lose 4.6 ft-lb/e ft.
Potr loss o• -'Ated 5.49 ft-lb/sc ft.

Figure 59. eItributio of Power In Anmular Jet.
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Figure 60. Static Pressure Variation Across a Jet -
Comparison of Theoretical and Experimental
Values.
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As in the preceding measurements, the values here plotted are computed from
the new data without smoothing or selection.

The results show that there is a slight improvement in cushion pressure with
the large cavity. The blower was able to pull the outlet depression down to
3. 12 inches of water, as against 2. 91 inches, with the small cavity (low cushion
board). The preceding test (Figure 58) gave slightly higher values: = 2.61,

= 2.94, . = 0. 892. This difference, when expressed in te,.ins of posi-
tive supply pressure, appears as a higher supply pressure and Yigher cushion
pressure. This is presumably due to long-term supply voltage variations to
the rig motor rather than a change in the total rig loss coefficient. The cushion
pressure ratio for both tests 1A6 1)remains practically the same at

;A.

2.7128 = 0. 890 (large cavity)

d-5/. = = 0.887 (small cavity).
,~p. 2.91

Thus, there is no difference between the two configurations, within the exper-
imental accuracy of the tests.

Some movement of air, downward In the largep ovity sad upward in proximity
to the Jet, was detected. The velocities wore In the ruagsof 0 - 10 feet per
second and were presumably evidswe of a prima"y cuslin vortex driven by
the Jet. With the low oushlon board, practically ao i movement was detected;
there were traces of flow at 5 feet per seond or so toward the jet along the
underside of the cushion board bu the O realty these Is somewhat questionable.

In all other rspects the traverses are almost etWial sad Consisten with the
measurements closer to the jet (Figure 58). This oonsistemy, Incidentally,
increases confidence in the aocuracy of the nstrumenatien used in these ex-
periments.
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Chapter Five

THE EFFECT OF TOTAL PRESSURE VARIATION ACROSS AN ANNULAR JET

The general solution for an annular jet (Equation 94) contains the local jet total
pressure ( A 5 ) as a variable of . So far, the equation has been solved only
for the case A ff = constant.

In a practical application AP, is rarely constant, because of the losses incurred
upstream of the nozzle. Thus it is of interest to discover the effect of varying
AR• across the jet.

From a more academic point of view, there io no reason to suppose that con-
stant total pressure gives the maximum lift per unit jet power expended, and
it would be instructive to discover the true optimum distribution. in practical
cases where some adjustment of the q distribution is possible (an annular
jet driven as an eductor, for example) it may then be possible to bias the distri-
bution in the direction of this theoretical optimum.

There is also another practical aspect. It is usual to reduce experimental
measurements of cushion pressure by dividing by the mean jet total pressure.
If this parameter is not independent of the total pressure distribution shape --
as we shall see that it is not -- then this method of presenting results is unsat-
isfactory.

THE SPECIAL CUS OF CONA1ANT JET VELOCITY

In this smction the samular jet equMtons will be solved for the special case of
an smlar jet Wbose tota bead distriutian is such that the jet velocity is con-
stant across the duct.

Ap (174)

Equation (174) can be substituted forAP& In the basic equation of motion. From
Equation (97),the auatic. for ourved flow becomes

1(175)
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or

(176)

A, 4-' .•,. ,7
- 7 - (177)

1 ,I 4vi f 2 4-i Q (178)

Substituting in (174) for

P. +

.3'i( .. '¼ i0 (179)

The cushion pressure is obviously

S 870 (181)

-e, .• % 11 4- (182)

The Jet power is
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Thus, by substituting(177) or (178) in (183), and by using equation (181) or (182)

for the cushion pressure, we can determine the parameter A+L

Determination of the Jet Curvature Parameter 2

The nozzle mass flow is obviously

,;-~ M (184)

At ambient pressure, the local velocity will be given by

e~i 'jf2. Y2.f .(15

0

Combining (184) and (185) gives the integral relationship

)~ (186)

But, from Equation (107)

Theme two equations enable us to determine .

Calculation of h4, for Free-Vortex Flow

For 7 = 1.0 Equations (180) and (183) give

:.__,•.- , 1 - . (187)
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Thus,from Equation (145),

ej LIL(188)

Since -,t )

= .Cec.-'l (, - .*k)Ij . (189)

Calculation of for Constant Radius Flow

For = 0, Equations (179) and (183) give

C•- t-o +C, (190)

ThuA from Equation (145),

(191)

where i7# I in this case.

Discussion of Results

The total head variations necessary to give constant jet velocity are given in
Figure 63 expressed as the ratio APQ/AEP.. This ratio uniquely defines A
for the constant radius of curvature case, since the variation is linear acro is
the jet (Equation 179),but not the free-vortex solution.

Values of .hAOý. plotted in Figure 64 show a substantial difference between
the two curvature assumptions, but little difference in each case for constant

119



TOTAL HEAD
DISTRIBUTION

5

CONSTANT RADIUS

4 VI5 . 1 .0/
APIL

FREE-VORTEX FLOW

3

2

04 6 8 10

HEIGHT PARAMETER R/t

Figure 63. Jet Total Head Distribution Needed To Give

Constant Jet Velocity.

120



5.0__ _ _ _

5. 0 APj = CONSTANT
... 4 rc _____ ____ = ONSTANT

CONSTANT RADIUS FLOW
FREE-VORTEX FLOW

2.0 -

1.0

0. 5 ______ _____ _

0.2

0.1

.05
0 2 4 6 8 10

HEIGHT PARAMETER Alt

Figure 64. The Cushion Pressure Parameter A)i

as a Function of the Height Parameter

121



jet velocity as against constant total head, except at very low values of R .
Figure 65 emphasizes this point, and it is interesting to note that, whereas con-
stant jet velocity increases the lift per unit power for constant radius theory, it
decreases it in free-vortex flow. Only the constant radius solution is significant
for % 4 1. 0, of course.

THE INFLUENCE OF THE TOTAL PRESSURE DISTRIBUTION ON CUSHION
PRESSURE IN TERMS OF MEAN TOTAL PRESSURE, FOR FREE-VORTEX
FLOW

It is normal to express cushion press•re as the ratio , For example,
exponential theory gives

for a constant total head in the jet.

We have seen that in reducing experimental data, when A is not constant
across the jet, it is usual to find the mean value a& and Ience the ratio
60,3• . It will he shown below that this is acceptable when the total pressure
profile is symmetrical about the midpoint, but not when the distribution is
skewed, for the case of free-vortex flow.

For the case 1= , Equation (95) gives the cushion pressure as

6 4. 43__ f

That is, ~ 7  ) Z w4 5'(;: (192)

Thus the determination of the cushion pressure depends upon the evaluation
of the two integralsI

A (the mean total pressure)
(193)

and (a weighted mean).
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Equation (192) can be rewritten as

- (194)

If a shape integral is defined as

A Ps 4N) j- (195)

Equation (194) becomes

Y t= [ 2~~)J +()) (196)
APM

= (value for a constant + (increment due
total pressure distribution) to the shape factor)

In the case of profiles which ai-e symmetri about -•=/ it can be shown
that ) 0 always. TU is Iprovd as follows:

S-

.. ./ ,' - • •i ,¢ !, ;
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